Salt and low temperature were both very important factors for soybean production. It was necessary to improve the salt stress and low-temperature tolerance of soybean. The main purpose of this paper was to map the qua...Salt and low temperature were both very important factors for soybean production. It was necessary to improve the salt stress and low-temperature tolerance of soybean. The main purpose of this paper was to map the quantitative trait loci(QTL) related with salt tolerance and low- temperature tolerance at germination stage with backcross introgression lines(BILs),and analyze the genetic overlap between them. There were 22 QTL located with BC2 F4 introgression populations after salt stress,and 15 QTL were mapped after low-temperature stress. Seven overlapping QTLs between salt tolerance and low-temperature tolerance were detected on 6 linkage groups at germination stage. In total,there were 31.81 % of salt tolerance and low-temperature tolerance loci existed genetic overlap.展开更多
Diseases caused by fungal pathogens account for approximately 50% of all soybean disease losses around the world. Conflicting results of fungal disease resistance QTLs from different populations often occurred. The ob...Diseases caused by fungal pathogens account for approximately 50% of all soybean disease losses around the world. Conflicting results of fungal disease resistance QTLs from different populations often occurred. The objectives of this study were to: (i) evaluate evidence for reported fungal disease resistance QTLs associations in soybean and (ii) extract relatively reliable and useful information from the "real" QTLs and mine putative genes in soybean. An integrated map of fungal disease resistance QTLs in soybean was established with soymap 2 published in 2004 as a reference map. QTLs of fungal disease resistance developed from each of separate populations in recent 10 years were integrated into a combinative map for gene cloning and marker assisted selection in soybean. 107 QTLs from different maps were integrated and projected to the reference map with the software BioMercator 2.1. A method of meta-analysis was used to narrow down the confidence interval, and 23 "real" QTLs and their corresponding markers were obtained from 12 linkage groups (LG), respectively. Two published R genes were found in these "real" QTLs intervals. Sequences in the "real" QTLs intervals were predicted by GENSCAN, and these predicted genes were annotated in Goblet. 228 resistance gene analogs (RGAs) in 12 different terms were mined. The results will lay the foundation for a bioinformatics platform combining abundant QTLs, and offer the basis for marker assisted selection and gene cloning in soybean.展开更多
文摘Salt and low temperature were both very important factors for soybean production. It was necessary to improve the salt stress and low-temperature tolerance of soybean. The main purpose of this paper was to map the quantitative trait loci(QTL) related with salt tolerance and low- temperature tolerance at germination stage with backcross introgression lines(BILs),and analyze the genetic overlap between them. There were 22 QTL located with BC2 F4 introgression populations after salt stress,and 15 QTL were mapped after low-temperature stress. Seven overlapping QTLs between salt tolerance and low-temperature tolerance were detected on 6 linkage groups at germination stage. In total,there were 31.81 % of salt tolerance and low-temperature tolerance loci existed genetic overlap.
基金supported by the funding from the National Natural Science Foundation of China(30971809)the National 973 Program of China(2004CB 117203-5)+2 种基金the National 948 Project of China[(2006-G1(A)]the National High-Tech R&D Program of China(863 Program, 2006AA100104-3)the Heilongjiang Foundation for University Key Teachers,China(1152G007)
文摘Diseases caused by fungal pathogens account for approximately 50% of all soybean disease losses around the world. Conflicting results of fungal disease resistance QTLs from different populations often occurred. The objectives of this study were to: (i) evaluate evidence for reported fungal disease resistance QTLs associations in soybean and (ii) extract relatively reliable and useful information from the "real" QTLs and mine putative genes in soybean. An integrated map of fungal disease resistance QTLs in soybean was established with soymap 2 published in 2004 as a reference map. QTLs of fungal disease resistance developed from each of separate populations in recent 10 years were integrated into a combinative map for gene cloning and marker assisted selection in soybean. 107 QTLs from different maps were integrated and projected to the reference map with the software BioMercator 2.1. A method of meta-analysis was used to narrow down the confidence interval, and 23 "real" QTLs and their corresponding markers were obtained from 12 linkage groups (LG), respectively. Two published R genes were found in these "real" QTLs intervals. Sequences in the "real" QTLs intervals were predicted by GENSCAN, and these predicted genes were annotated in Goblet. 228 resistance gene analogs (RGAs) in 12 different terms were mined. The results will lay the foundation for a bioinformatics platform combining abundant QTLs, and offer the basis for marker assisted selection and gene cloning in soybean.