期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Extracellular matrix from human umbilical cordderived mesenchymal stem cells as a scaffold for peripheral nerve regeneration 被引量:8
1
作者 Bo Xiao Feng Rao +10 位作者 Zhi-yuan Guo Xun Sun Yi-guo Wang Shu-yun Liu Ai-yuan Wang Quan-yi Guo Hao-ye Meng Qing Zhao Jiang Peng Yu Wang Shi-bi Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第7期1172-1179,共8页
The extracellular matrix,which includes collagens,laminin,or fibronectin,plays an important role in peripheral nerve regeneration.Recently,a Schwann cell-derived extracellular matrix with classical biomaterial was use... The extracellular matrix,which includes collagens,laminin,or fibronectin,plays an important role in peripheral nerve regeneration.Recently,a Schwann cell-derived extracellular matrix with classical biomaterial was used to mimic the neural niche.However,extensive clinical use of Schwann cells remains limited because of the limited origin,loss of an autologous nerve,and extended in vitro culture times.In the present study,human umbilical cord-derived mesenchymal stem cells(h UCMSCs),which are easily accessible and more proliferative than Schwann cells,were used to prepare an extracellular matrix.We identified the morphology and function of h UCMSCs and investigated their effect on peripheral nerve regeneration.Compared with a non-coated dish tissue culture,the h UCMSC-derived extracellular matrix enhanced Schwann cell proliferation,upregulated gene and protein expression levels of brain-derived neurotrophic factor,glial cell-derived neurotrophic factor,and vascular endothelial growth factor in Schwann cells,and enhanced neurite outgrowth from dorsal root ganglion neurons.These findings suggest that the h UCMSC-derived extracellular matrix promotes peripheral nerve repair and can be used as a basis for the rational design of engineered neural niches. 展开更多
关键词 umbilical Schwann regeneration scaffold neurotrophic biomaterial niche fibronectin glial engineered
下载PDF
Repair, protection and regeneration of peripheral nerve injury 被引量:1
2
作者 Shan-lin Chen Zeng-gan Chen +24 位作者 Hong-lian Dai Jian-xun Ding Jia-song Guo Na Han Bao-guo Jiang Hua-jun Jiang Juan Li Shi-pu Li Wen-jun Li Jing Liu Yang Liu Jun-xiong Ma Jiang Peng Yun-dong Shen Guang-wei Sun Pei-fu Tang Gu-heng Wang Xiang-hai Wang Liang-bi Xiang Ren-guo Xie Jian-guang Xu Bin Yu Li-cheng Zhang Pei-xun Zhang Song-lin Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第11期1777-1798,共22页
Reading guide 1778Repair of long-segment peripheral nerve defects1779Bionic reconstruction of hand function after adult brachial plexus root avulsion1780Optimized design of regeneration material for the treatment of p... Reading guide 1778Repair of long-segment peripheral nerve defects1779Bionic reconstruction of hand function after adult brachial plexus root avulsion1780Optimized design of regeneration material for the treatment of peripheral nerve injury1781Synergism of electroactive polymeric materials and electrical stimulation promotes peripheral nerve repair1783Schwann cell effect on peripheral nerve repair and regeneration . 展开更多
关键词 CELL protection and regeneration of peripheral nerve injury REPAIR
下载PDF
Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms 被引量:26
3
作者 Zhi-yuan Guo Xun Sun +3 位作者 Xiao-long Xu Qing Zhao Jiang Peng Yu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期651-658,共8页
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regen... Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair. 展开更多
关键词 nerve regeneration human umbilical cord-derived mesenchymal stem cells conditioned medium Schwann cells dorsal root ganglion AXONS peripheral nerve regeneration neurotrophic factors neural regeneration
下载PDF
Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering 被引量:2
4
作者 Jun-feng Zhou Yi-guo Wang +3 位作者 Liang Cheng Zhao Wu Xiao-dan Sun Jiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1644-1652,共9页
Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We ... Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topog- raphy, qhere was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration. 展开更多
关键词 nerve regeneration POLYPYRROLE ELECTROSPINNING CONDUCTIVITY electrical property Schwann cells human umbilical cord mesenchymalstem cells nerve tissue engineering nanofibrous scaffolds neural regeneration
下载PDF
A novel tissue engineered nerve graft constructed with autologous vein and nerve microtissue repairs a longsegment sciatic nerve defect 被引量:1
5
作者 Jing Wang Ya-Qiong Zhu +14 位作者 Yu Wang Hong-Guang Xu Wen-Jing Xu Yue-Xiang Wang Xiao-Qing Cheng Qi Quan Yong-Qiang Hu Chang-Feng Lu Yan-Xu Zhao Wen Jiang Chen Liu Liang Xiao Wei Lu Chen Zhu Ai-Yuan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第1期143-149,共7页
Veins are easy to obtain,have low immunogenicity,and induce a relatively weak inflammatory response.Therefore,veins have the potential to be used as conduits for nerve regeneration.However,because of the presence of v... Veins are easy to obtain,have low immunogenicity,and induce a relatively weak inflammatory response.Therefore,veins have the potential to be used as conduits for nerve regeneration.However,because of the presence of venous valves and the great elasticity of the venous wall,the vein is not conducive to nerve regeneration.In this study,a novel tissue engineered nerve graft was constructed by combining normal dissected nerve microtissue with an autologous vein graft for repairing 10-mm peripheral nerve defects in rats.Compared with rats given the vein graft alone,rats given the tissue engineered nerve graft had an improved sciatic static index,and a higher amplitude and shorter latency of compound muscle action potentials.Furthermore,rats implanted with the microtissue graft had a higher density and thickness of myelinated nerve fibers and reduced gastrocnemius muscle atrophy compared with rats implanted with the vein alone.However,the tissue engineered nerve graft had a lower ability to repair the defect than autogenous nerve transplantation.In summary,although the tissue engineered nerve graft constructed with autologous vein and nerve microtissue is not as effective as autologous nerve transplantation for repairing long-segment sciatic nerve defects,it may nonetheless have therapeutic potential for the clinical repair of long sciatic nerve defects.This study was approved by the Experimental Animal Ethics Committee of Chinese PLA General Hospital(approval No.2016-x9-07)on September 7,2016. 展开更多
关键词 in vivo INJURY motor neurological function peripheral nerve injury rat recovery REGENERATION repair
下载PDF
Controlling the Release of bF GF from Silk Fibroin Membrane 被引量:1
6
作者 JI Ya Wei KONG Yan +4 位作者 ZHAO Ya Hong WANG Ya Ling ZHAO Jing ZHANG Lu Zhong YANG Yu Min 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第12期973-977,共5页
Since neurotrophic factor is easy to degrade and aggregate, it usually has a short half-life in vitro. To overcome this shortage, neurotrophic factor has been combined with the silk fibroin (SF) membrane to realize ... Since neurotrophic factor is easy to degrade and aggregate, it usually has a short half-life in vitro. To overcome this shortage, neurotrophic factor has been combined with the silk fibroin (SF) membrane to realize less degradation, optimal loading efficiency, sustained release, and good adsorption. 展开更多
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部