期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed 被引量:3
1
作者 Biranchi PANDA A. GARG +2 位作者 Zhang JIAN Akbar HEIDARZADEH Liang GAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2016年第3期289-298,共10页
Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected... Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 A1 alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process. 展开更多
关键词 tensile properties ultimate tensile strength tensile elongation friction stir welding tool rotational speed genetic programming welding speed
原文传递
Shape and topology optimization for tailoring the ratio between two flexural eigenfrequencies of atomic force microscopy cantilever probe
2
作者 Qi XIA Tao ZHOU +1 位作者 Michael Yu WANG Tielin SHI 《Frontiers of Mechanical Engineering》 SCIE CSCD 2014年第1期50-57,共8页
In an operation mode of atomic force micro- scopy that uses a higher eigenmode to determine the physical properties of material surface, the ratio between the eigenfrequency of a higher flexural eigenmode and that of ... In an operation mode of atomic force micro- scopy that uses a higher eigenmode to determine the physical properties of material surface, the ratio between the eigenfrequency of a higher flexural eigenmode and that of the first flexural eigenmode was identified as an important parameter that affects the sensitivity and accessibility. Structure features such as cut-out are often used to tune the ratio of eigenfrequencies and to enhance the performance. However, there lacks a systematic and automatic method for tailoring the ratio. In order to deal with this issue, a shape and topology optimization problem is formulated, where the ratio between two eigenfrequen- cies is defined as a constraint and the area of the cantilever is maximized. The optimization problem is solved via the level set based method. 展开更多
关键词 atomic force microscopy cantilever probe eigenfrequency optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部