Most of TiO_(2) particles can be used as a photocatalyst for the selective oxidation of cyclohexane under ultraviolet light illumination.In this paper,Ti^(3+) self-doped TiO_(2) submicron-sized particles(i.e.,Ti^(3+)/...Most of TiO_(2) particles can be used as a photocatalyst for the selective oxidation of cyclohexane under ultraviolet light illumination.In this paper,Ti^(3+) self-doped TiO_(2) submicron-sized particles(i.e.,Ti^(3+)/TiO_(2) SMP)were used as a catalyst for visible-light driven photocatalytic cyclohexane oxidation.The microstructure and properties of the Ti^(3+)/TiO_(2) SMP were characterized by X-ray diffraction(XRD),UVevisible diffuse reflection(UVeVis DRS),scanning electron microscopy(SEM),electron paramagnetic resonance(EPR),solid-state photoluminescence spectroscopy(PLS)and X-ray photoelectron spectroscopy(XPS).The Ti^(3+)/TiO_(2) SMP exhibits good visible-light driven photocatalytic performances for cyclohexane oxidation with cyclohexanone as a dominate product.Effects of solvent,reaction temperature,reaction time and oxygen pressure on the formation of cyclohexanone were investigated.The cyclohexane oxidation over the Ti^(3+)/TiO_(2) SMP photocatalyst using carbon tetrachloride as a solvent under the optimal conditions presents a greater selectivity to cyclohexane(i.e.,95.1%).Based on the controlled experimental results with different radical scavengers,the hole(h^(+))is critical for the activation of cyclohexane.展开更多
基金the support of this work by National Key Research and Development Plan(Grant No.2016YFC0303704)the National Natural Science Foundation of China(Grant No.21676296).
文摘Most of TiO_(2) particles can be used as a photocatalyst for the selective oxidation of cyclohexane under ultraviolet light illumination.In this paper,Ti^(3+) self-doped TiO_(2) submicron-sized particles(i.e.,Ti^(3+)/TiO_(2) SMP)were used as a catalyst for visible-light driven photocatalytic cyclohexane oxidation.The microstructure and properties of the Ti^(3+)/TiO_(2) SMP were characterized by X-ray diffraction(XRD),UVevisible diffuse reflection(UVeVis DRS),scanning electron microscopy(SEM),electron paramagnetic resonance(EPR),solid-state photoluminescence spectroscopy(PLS)and X-ray photoelectron spectroscopy(XPS).The Ti^(3+)/TiO_(2) SMP exhibits good visible-light driven photocatalytic performances for cyclohexane oxidation with cyclohexanone as a dominate product.Effects of solvent,reaction temperature,reaction time and oxygen pressure on the formation of cyclohexanone were investigated.The cyclohexane oxidation over the Ti^(3+)/TiO_(2) SMP photocatalyst using carbon tetrachloride as a solvent under the optimal conditions presents a greater selectivity to cyclohexane(i.e.,95.1%).Based on the controlled experimental results with different radical scavengers,the hole(h^(+))is critical for the activation of cyclohexane.