Immunoglobulin Y(Ig Y)is an effective orally administered antibody used to protect against various intestinal pathogens,but which cannot tolerate the acidic gastric environment.In this study,Ig Y was microencapsulated...Immunoglobulin Y(Ig Y)is an effective orally administered antibody used to protect against various intestinal pathogens,but which cannot tolerate the acidic gastric environment.In this study,Ig Y was microencapsulated by alginate(ALG)and coated with chitooligosaccharide(COS).A response surface methodology was used to optimize the formulation,and a simulated gastrointestinal(GI)digestion(SGID)system to evaluate the controlled release of microencapsulated Ig Y.The microcapsule formulation was optimized as an ALG concentration of 1.56%(15.6 g/L),COS level of 0.61%(6.1 g/L),and Ig Y/ALG ratio of 62.44%(mass ratio).The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%,a loading capacity of 33.75%,and an average particle size of 588.75μm.Under this optimum formulation,the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface,and thus the GI release rate of encapsulated Ig Y was significantly reduced.The release of encapsulated Ig Y during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions,respectively.The microcapsule also allowed the Ig Y to retain 84.37%immune-activity after 4 h simulated GI digestion,significantly higher than that for unprotected Ig Y(5.33%).This approach could provide an efficient way to preserve Ig Y and improve its performance in the GI tract.展开更多
In polymorphic mammalian species that display multiple color forms, those with dark, or melanic pelage would be prone to overheating, especially if they live in warm climates, because their fur absorbs solar energy at...In polymorphic mammalian species that display multiple color forms, those with dark, or melanic pelage would be prone to overheating, especially if they live in warm climates, because their fur absorbs solar energy at a higher rate. However, experimental studies indicate that certain physical properties of fur of dark individuals appear to prevent, or minimize heat stress, although it is not clear what properties do so. Here, we tested the possibility that black-furred individuals simply have shorter or thinner hair fibers, which would create a lighter (in terms of weight) coat or one that allows greater air flow for evaporative coo- ling. We examined museum specimens of eastern fox squirrels Sciurus niger, a species native to the United States and one that displays brown, grey or all-black pelage color, and used image analysis procedures to quantify hairs from the dorsal surface and tail. From examination of 43 specimens (19 brown, 9 black and 15 grey), and 1,720 hairs, we found no significant difference in hair lengths across color morphs, but significant differences in hair fiber widths. Black squirrels had thinner body hairs than other forms (7% thinner), but thicker tail hairs (9% thicker) than the others. Given that the dorsal surface would be directly exposed to solar radiation, we interpret this to be an adaptation to prevent heat stress during the day. The thicker tail hairs may be an adapta- tion for nighttime thermoregulation, since squirrels sleep with their tails wrapped around their bodies. These results add to a growing literature body of the functional significance of mammalian pelage [Current Zoology 57 (6): 731-736, 2011].展开更多
基金Project supported by the National Key Research and Development Program of China(No.2018YFD0400305)the Modern Agro-industry Technology Research System of China(No.CARS-40-K26)the“One Belt and One Road”International Science and Technology Cooperation Program of Zhejiang,China(No.2019C04022)。
文摘Immunoglobulin Y(Ig Y)is an effective orally administered antibody used to protect against various intestinal pathogens,but which cannot tolerate the acidic gastric environment.In this study,Ig Y was microencapsulated by alginate(ALG)and coated with chitooligosaccharide(COS).A response surface methodology was used to optimize the formulation,and a simulated gastrointestinal(GI)digestion(SGID)system to evaluate the controlled release of microencapsulated Ig Y.The microcapsule formulation was optimized as an ALG concentration of 1.56%(15.6 g/L),COS level of 0.61%(6.1 g/L),and Ig Y/ALG ratio of 62.44%(mass ratio).The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%,a loading capacity of 33.75%,and an average particle size of 588.75μm.Under this optimum formulation,the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface,and thus the GI release rate of encapsulated Ig Y was significantly reduced.The release of encapsulated Ig Y during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions,respectively.The microcapsule also allowed the Ig Y to retain 84.37%immune-activity after 4 h simulated GI digestion,significantly higher than that for unprotected Ig Y(5.33%).This approach could provide an efficient way to preserve Ig Y and improve its performance in the GI tract.
文摘In polymorphic mammalian species that display multiple color forms, those with dark, or melanic pelage would be prone to overheating, especially if they live in warm climates, because their fur absorbs solar energy at a higher rate. However, experimental studies indicate that certain physical properties of fur of dark individuals appear to prevent, or minimize heat stress, although it is not clear what properties do so. Here, we tested the possibility that black-furred individuals simply have shorter or thinner hair fibers, which would create a lighter (in terms of weight) coat or one that allows greater air flow for evaporative coo- ling. We examined museum specimens of eastern fox squirrels Sciurus niger, a species native to the United States and one that displays brown, grey or all-black pelage color, and used image analysis procedures to quantify hairs from the dorsal surface and tail. From examination of 43 specimens (19 brown, 9 black and 15 grey), and 1,720 hairs, we found no significant difference in hair lengths across color morphs, but significant differences in hair fiber widths. Black squirrels had thinner body hairs than other forms (7% thinner), but thicker tail hairs (9% thicker) than the others. Given that the dorsal surface would be directly exposed to solar radiation, we interpret this to be an adaptation to prevent heat stress during the day. The thicker tail hairs may be an adapta- tion for nighttime thermoregulation, since squirrels sleep with their tails wrapped around their bodies. These results add to a growing literature body of the functional significance of mammalian pelage [Current Zoology 57 (6): 731-736, 2011].