As prior researchers have suggested,a firm’s success in an international market depends on how well its strategy fits the nonmarket environment,such as formal institutions.This paper examines the determinants of form...As prior researchers have suggested,a firm’s success in an international market depends on how well its strategy fits the nonmarket environment,such as formal institutions.This paper examines the determinants of formal institutions around new areas of economic activities.Specifically,we propose a framework for understanding how the quality of formal institutions in promoting entrepreneurship drives the focus of such institutions concerning initial coin offering(ICO),which is emerging as a popular fundraising method.The paper uses inductive analysis to examine how nonmarket factors—such as a jurisdiction’s tax haven nature,regulators’perceptions of ICOs as threats to national or political interests,and trade and industry associations—might moderate the relationship between the quality of institutions and the focus of such institutions regarding ICOs.One of this study’s key findings is that an economy’s quality of entrepreneurship-related institutions,perceived threats to national/political interests,and tax haven nature lead to different policy orientations.Consequently,regulators assign different importance when promoting crypto-entrepreneurship and dealing with associated risks.Regulators focusing mainly on promoting crypto-ventures have taken measures to enrich the blockchain ecosystem and provided tax and non-tax incentives to attract such ventures.Regulators focusing mainly on dealing with crypto-venture risks rely on a regulatory sandbox and close regulatory monitoring of such ventures.展开更多
The number of older adults (individuals ≥65 years), particularly women, in our society is increasing and understanding the impact of exercise on muscle capacity (e.g., strength and power) and subsequently physica...The number of older adults (individuals ≥65 years), particularly women, in our society is increasing and understanding the impact of exercise on muscle capacity (e.g., strength and power) and subsequently physical function is of utmost importance to prevent disability and maintain independence. Muscle capacity declines with age and this change negatively impacts physical function in older women. Exercise, specifically resistance training, is recommended to counteract these declines; however, the synergistic relationships between exercise, muscle capacity, and physical function are poorly understood. This review will summarize the literature regarding age-related changes in the aforementioned variables and review the research on the impact of resistance training interventions on muscle capacity and physical function in older women. Recommendations for future research in this area will be discussed.展开更多
Glioblastoma Multiforme (GBM) represents one of the most aggressive and metastatic brain tumors, with a dismal success rate of less than three percent after five years, particularly in tumors with active immune checkp...Glioblastoma Multiforme (GBM) represents one of the most aggressive and metastatic brain tumors, with a dismal success rate of less than three percent after five years, particularly in tumors with active immune checkpoints. This necessitates the development of targeted endogenous agents for precise GBM treatment. Previous experiments utilizing Chemovar Specific Cannabis Extractions (CSCEs), fractionated with polar solvents and quantified using Liquid and Gas Column Chromatography combined with Mass Spectrometry (LC/GCMS), have shown reduced viability and motility in human GBM cell lines. However, the complexity of the botanical substance has hindered the personalization of standard cannabis medicines for GBM due to unknown synergistic effects of multiple compounds. To address this limitation, our study focuses on exposing AM251 cells to chemovar fractions extracted using a non-polar solvent, thereby isolating a broader spectrum of constituents. By employing LC/GCMS in conjunction with Nuclear Magnetic Resonance (NMR), we have identified and quantified nine* compounds present in the non-polar CSCE that exhibit significant efficacy (0.1 μM) in inducing cytotoxicity* in GBM tumor cells. Conversely, the polar fraction in our experiment did not demonstrate efficacy against UM251 cells. The quantification of individual compounds within a cannabis extraction that selectively induces cell death in brain tumors holds promise for guiding future research and facilitating the development of a standardized CSCE for GBM therapy.展开更多
Malaria infection is a major problem in many countries. The use of the Insecticide-Treated Bed-Nets (ITNs) has been shown to significantly reduce the number of malaria infections;however, the effectiveness is often je...Malaria infection is a major problem in many countries. The use of the Insecticide-Treated Bed-Nets (ITNs) has been shown to significantly reduce the number of malaria infections;however, the effectiveness is often jeopardized by improper handling or human behavior such as inconsistent usage. In this paper, we present a game-theoretical model for ITN usage in communities with malaria infections. We show that it is in the individual’s self interest to use the ITNs as long as the malaria is present in the community. Such an optimal ITN usage will significantly decrease the malaria prevalence and under some conditions may even lead to complete eradication of the disease.展开更多
Purpose: The relationship between acute exercise and executive functions in college students with attention deficit hyperactivity disorder (ADHD) has not been clearly established. The purpose of this preliminary st...Purpose: The relationship between acute exercise and executive functions in college students with attention deficit hyperactivity disorder (ADHD) has not been clearly established. The purpose of this preliminary study was to examine the difference in cognitive performance between college students with and without ADHD and to explore the effects of acute exercise on multiple aspects of executive functions and on serum brain derived neurotrophic factor (BDNF). Methods: College students (normal: n = 10; ADHD: n = 10) performed the Stroop Test, Trail Making Test, and Digit Span Test prior to and after an acute exercise intervention. Blood samples were obtained prior to the pre-test cognitive test performance and then again after exercise and prior to the post-test cognitive test performance. Results: Students with ADHD exhibited impaired executive functions, particularly on inhibition. Additionally, while acute exercise improved all aspects of executive functions in those without ADHD, acute exercise only improved inhibitory performance for those with ADHD. Further, BDNF was not influenced by acute exercise regardless of the subjects' ADHD status. Conclusion: These results provide preliminary evidence for exercise as a potential adjunct treatment for benefitting inhibition in college students with ADHD.展开更多
This paper develops and analyzes a new family of dual-wind discontinuous Galerkin(DG)methods for stationary Hamilton-Jacobi equations and their vanishing viscosity regularizations.The new DG methods are designed using...This paper develops and analyzes a new family of dual-wind discontinuous Galerkin(DG)methods for stationary Hamilton-Jacobi equations and their vanishing viscosity regularizations.The new DG methods are designed using the DG fnite element discrete calculus framework of[17]that defnes discrete diferential operators to replace continuous differential operators when discretizing a partial diferential equation(PDE).The proposed methods,which are non-monotone,utilize a dual-winding methodology and a new skewsymmetric DG derivative operator that,when combined,eliminate the need for choosing indeterminable penalty constants.The relationship between these new methods and the local DG methods proposed in[38]for Hamilton-Jacobi equations as well as the generalized-monotone fnite diference methods proposed in[13]and corresponding DG methods proposed in[12]for fully nonlinear second order PDEs is also examined.Admissibility and stability are established for the proposed dual-wind DG methods.The stability results are shown to hold independent of the scaling of the stabilizer allowing for choices that go beyond the Godunov barrier for monotone schemes.Numerical experiments are provided to gauge the performance of the new methods.展开更多
Youth athletes are ideal candidates for novel therapeutic motor learning interventions that leverage the plasticity of the central nervous system to promote desirable biomechanical adaptions.We summarize the empirical...Youth athletes are ideal candidates for novel therapeutic motor learning interventions that leverage the plasticity of the central nervous system to promote desirable biomechanical adaptions.We summarize the empirical data supporting the three pillars of the Optimizing Performance Through Intrinsic Motivation and Attention for Learning(OPTIMAL)theory of motor learning and expand on potential neurophysiologic mechanisms that will support enhanced movement mechan-ics in youth to optimize prevention programs for reduced injury risk,injury rehabilitation,exercise performance,and play(Prevention Rehabilitation Exercise Play;PREP).Specifically,we highlight the role of motivational factors to promote the release of dopamine that could accelerate motor performance and learning adaptations.Further,we detail the potential for an external focus of attention to shift attentional allocation and increase brain activity in regions important for sensorimotor integration to facilitate primary motor cortex efficiency.This manuscript serves to provide the most current data in support of the application of OPTIMAL PREP training strategies of the future.展开更多
Orotidine 5'-monophosphate decarboxylase (ODCase) is known as one of the most proficient enzymes. The enzyme catalyzes the last reaction step of the de novo pyrimidine biosynthesis, the conversion from orotidine 5...Orotidine 5'-monophosphate decarboxylase (ODCase) is known as one of the most proficient enzymes. The enzyme catalyzes the last reaction step of the de novo pyrimidine biosynthesis, the conversion from orotidine 5'-monophosphate (OMP) to uridine 5'-mono- phosphate. The enzyme is found in all three domains of life, Bacteria, Eukarya and Archaea. Multiple sequence alignment of 750 putative ODCase sequences resulted in five distinct groups. While the universally conserved DxKxxDx motif is present in all the groups, depending on the groups, several characteristic motifs and residues can be identified. Over 200 crystal structures of ODCases have been determined so far. The structures, together with biochemical assays and computational studies, elucidated that ODCase utilized both transition state stabilization and substrate distortion to accelerate the decarboxylation of its natural substrate. Stabilization of the vinyl anion intermediate by a conserved lysine residue at the catalytic site is considered the largest contributing factor to catalysis, while bending of the carboxyl group from the plane of the aromatic pyrimidine ring of OMP accounts for substrate distortion. A number of crystal structures of ODCases complexed with potential drug candidate molecules have also been determined, including with 6-iodo- uridine, a potential antimalarial agent.展开更多
Countless studies have been devoted to the scientific evaluation of the safety and/or efficacy of botanical natural products.Investigators involved in such studies face a unique set of challenges.Natural products diff...Countless studies have been devoted to the scientific evaluation of the safety and/or efficacy of botanical natural products.Investigators involved in such studies face a unique set of challenges.Natural products differ from their pharmaceutical counterparts in that they are typically complex mixtures,for which the identities and quantities of components present are not known.To further complicate matters,the composition of these mixtures will vary depending on source material and method of preparation.Investigators conducting clinical trials with complex botanical natural products must choose from a myriad of potential preparations,which may vary greatly in composition.In making such decisions,it is extremely useful to know which components of the mixture are most likely to be responsible for its purported biological activity(the"active constituents").The gold standard approach for identifying active constituents of botanical natural products is bioassay-guided fractionation,in which the mixture is subjected to successive rounds of purification and bioassays until an active compound is identified.Bioassay guided fractionation has historically played a critical role in drug discovery,but is,nonetheless,fraught with challenges.The process is biased towards the most abundant and easily isolatable mixture components,which may not be the most biologically active.Furthermore,if multiple compounds contribute either additively,antagonistically,or synergistically to the observed biological activity of the mixture,activity may be lost upon isolation.As a complementary strategy to bioassay-guided fractionation,our research group has developed untargeted metabolomics strategies to aid in the identification of bioactive mixture components.These strategies involve profiling botanical mixtures using ultraperformance chromatography coupled to high resolving power mass spectrometry.The resulting chemical data is then integrated with biological assay data using biochemometric data analysis strategies.Several case studies will be presented illustrating how this approach can be applied,including for the identification of compounds from the botanical green(Camellia sinensis)that inhibit drug metabolizing enzymes.Such studies are being conducted as part of the Center for Excellence in Natural Product Drug Interaction Studies(Na PDI),which is supported by a cooperative agreement with the National Center for Complementary and Integrative Health,a component of the National Institutes of Health.展开更多
This paper develops and analyzes a fully discrete finite element method for a class of semilinear stochastic partial differential equations(SPDEs)with multiplicative noise.The nonlinearity in the diffusion term of the...This paper develops and analyzes a fully discrete finite element method for a class of semilinear stochastic partial differential equations(SPDEs)with multiplicative noise.The nonlinearity in the diffusion term of the SPDEs is assumed to be globally Lipschitz and the nonlinearity in the drift term is only assumed to satisfy a one-sided Lipschitz condition.These assumptions are the same ones as the cases where numerical methods for general nonlinear stochastic ordinary differential equations(SODEs)under“minimum assumptions”were studied.As a result,the semilinear SPDEs considered in this paper are a direct generalization of these nonlinear SODEs.There are several difficulties which need to be overcome for this generalization.First,obviously the spatial discretization,which does not appear in the SODE case,adds an extra layer of difficulty.It turns out a spatial discretization must be designed to guarantee certain properties for the numerical scheme and its stiffness matrix.In this paper we use a finite element interpolation technique to discretize the nonlinear drift term.Second,in order to prove the strong convergence of the proposed fully discrete finite element method,stability estimates for higher order moments of the H1-seminorm of the numerical solution must be established,which are difficult and delicate.A judicious combination of the properties of the drift and diffusion terms and some nontrivial techniques is used in this paper to achieve the goal.Finally,stability estimates for the second and higher order moments of the L^(2)-norm of the numerical solution are also difficult to obtain due to the fact that the mass matrix may not be diagonally dominant.This is done by utilizing the interpolation theory and the higher moment estimates for the H1-seminorm of the numerical solution.After overcoming these difficulties,it is proved that the proposed fully discrete finite element method is convergent in strong norms with nearly optimal rates of convergence.Numerical experiment results are also presented to validate the theoretical results and to demonstrate the efficiency of the proposed numerical method.展开更多
Purpose:The purpose of this literature review was to investigate how cooperative learning(CL)has been conceptualized and implemented in Chinese physical education(PE).CL is one of the most influential and widespread a...Purpose:The purpose of this literature review was to investigate how cooperative learning(CL)has been conceptualized and implemented in Chinese physical education(PE).CL is one of the most influential and widespread areas of theory,research,and practice in western education.With the promotion of Chinese government policies,CL has become a popular field of research and was widely used as a pedagogical practice in Chinese.Design/Approach/Methods:Shulruf’s five methodological steps were utilized as the process of screening and selecting relevant studies.Inductive analysis and constant comparison were conducted for analyzing the chosen literature.Findings:The analytic induction revealed four key themes:(a)historical development,(b)policy influence,(c)conceptualization of CL,and(d)implementation of CL.We found that the conceptualization of CL in Chinese PE was ambiguous,and the implementation of CL was predominantly documented by quantitative research methods.In addition,few studies were conducted at the elementary school level.Originality/Value:This is a comprehensive literature review on CL in Chinese PE.Findings and recommendations in this article will be beneficial for policymakers,scholars,and PE teachers to better understand and promote CL in China.展开更多
This paper is concerned with developing accurate and efficient numerical methods for one-dimensional fully nonlinear second order elliptic and parabolic partial differential equations (PDEs). In the paper we present...This paper is concerned with developing accurate and efficient numerical methods for one-dimensional fully nonlinear second order elliptic and parabolic partial differential equations (PDEs). In the paper we present a general framework for constructing high order interior penalty discontinuous Galerkin (IP-DG) methods for approximating viscosity solutions of these fully nonlinear PDEs. In order to capture discontinuities of the second order derivative uxx of the solution u, three independent functions p1,p2 and p3 are introduced to represent numerical derivatives using various one-sided limits. The proposed DG frame- work, which is based on a nonstandard mixed formulation of the underlying PDE, embeds a nonlinear problem into a mostly linear system of equations where the nonlinearity has been modified to include multiple values of the second order derivative uxz. The proposed framework extends a companion finite difference framework developed by the authors in [9] and allows for the approximation of fully nonlinear PDEs using high order polynomials and non-uniform meshes. In addition to the nonstandard mixed formulation setting, another main idea is to replace the fully nonlinear differential operator by a numerical operator which is consistent with the differential operator and satisfies certain monotonicity (called g-monotonicity) properties. To ensure such a g-monotonicity, the crux of the construction is to introduce the numerical moment, which plays a critical role in the proposed DG frame- work. The g-monotonicity gives the DG methods the ability to select the mathematically "correct" solution (i.e., the viscosity solution) among all possible solutions. Moreover, the g-monotonicity allows for the possible development of more efficient nonlinear solvers as the special nonlinearity of the algebraic systems can be explored to decouple the equations. This paper also presents and analyzes numerical results for several numerical test problems which are used to guage the accuracy and efficiency of the proposed DG methods.展开更多
Youth may be particularly responsive to motor learning training strategies that support injury-resistant movement mechanics in youth for prevention programs that reduce injury risk,injury rehabilitation,exercise perfo...Youth may be particularly responsive to motor learning training strategies that support injury-resistant movement mechanics in youth for prevention programs that reduce injury risk,injury rehabilitation,exercise performance,and play more gener-ally(Optimizing Performance Through Intrinsic Motivation and Attention for Learning Prevention Rehabilitation Exercise Play;OPTIMAL PREP)One purpose of the present manuscript was to provide clinical applications and tangible examples of how to implement the proposed techniques derived from OPTIMAL theory into PREP strategies for youth.A secondary purpose was to review recent advances in technology that support the clinical application of OPTIMAL PREP strategies without extensive resources/programming knowledge to promote evidence-driven tools that will support practitioner feedback delivery.The majority of examples provided are within the context of anterior cruciate ligament(ACL)injury rehabilitation,but we emphasize the potential for OPTIMAL PREP strategies to be applied to a range of populations and training scenarios that will promote injury resistance and keep youth active and healthy.展开更多
文摘As prior researchers have suggested,a firm’s success in an international market depends on how well its strategy fits the nonmarket environment,such as formal institutions.This paper examines the determinants of formal institutions around new areas of economic activities.Specifically,we propose a framework for understanding how the quality of formal institutions in promoting entrepreneurship drives the focus of such institutions concerning initial coin offering(ICO),which is emerging as a popular fundraising method.The paper uses inductive analysis to examine how nonmarket factors—such as a jurisdiction’s tax haven nature,regulators’perceptions of ICOs as threats to national or political interests,and trade and industry associations—might moderate the relationship between the quality of institutions and the focus of such institutions regarding ICOs.One of this study’s key findings is that an economy’s quality of entrepreneurship-related institutions,perceived threats to national/political interests,and tax haven nature lead to different policy orientations.Consequently,regulators assign different importance when promoting crypto-entrepreneurship and dealing with associated risks.Regulators focusing mainly on promoting crypto-ventures have taken measures to enrich the blockchain ecosystem and provided tax and non-tax incentives to attract such ventures.Regulators focusing mainly on dealing with crypto-venture risks rely on a regulatory sandbox and close regulatory monitoring of such ventures.
文摘The number of older adults (individuals ≥65 years), particularly women, in our society is increasing and understanding the impact of exercise on muscle capacity (e.g., strength and power) and subsequently physical function is of utmost importance to prevent disability and maintain independence. Muscle capacity declines with age and this change negatively impacts physical function in older women. Exercise, specifically resistance training, is recommended to counteract these declines; however, the synergistic relationships between exercise, muscle capacity, and physical function are poorly understood. This review will summarize the literature regarding age-related changes in the aforementioned variables and review the research on the impact of resistance training interventions on muscle capacity and physical function in older women. Recommendations for future research in this area will be discussed.
文摘Glioblastoma Multiforme (GBM) represents one of the most aggressive and metastatic brain tumors, with a dismal success rate of less than three percent after five years, particularly in tumors with active immune checkpoints. This necessitates the development of targeted endogenous agents for precise GBM treatment. Previous experiments utilizing Chemovar Specific Cannabis Extractions (CSCEs), fractionated with polar solvents and quantified using Liquid and Gas Column Chromatography combined with Mass Spectrometry (LC/GCMS), have shown reduced viability and motility in human GBM cell lines. However, the complexity of the botanical substance has hindered the personalization of standard cannabis medicines for GBM due to unknown synergistic effects of multiple compounds. To address this limitation, our study focuses on exposing AM251 cells to chemovar fractions extracted using a non-polar solvent, thereby isolating a broader spectrum of constituents. By employing LC/GCMS in conjunction with Nuclear Magnetic Resonance (NMR), we have identified and quantified nine* compounds present in the non-polar CSCE that exhibit significant efficacy (0.1 μM) in inducing cytotoxicity* in GBM tumor cells. Conversely, the polar fraction in our experiment did not demonstrate efficacy against UM251 cells. The quantification of individual compounds within a cannabis extraction that selectively induces cell death in brain tumors holds promise for guiding future research and facilitating the development of a standardized CSCE for GBM therapy.
文摘Malaria infection is a major problem in many countries. The use of the Insecticide-Treated Bed-Nets (ITNs) has been shown to significantly reduce the number of malaria infections;however, the effectiveness is often jeopardized by improper handling or human behavior such as inconsistent usage. In this paper, we present a game-theoretical model for ITN usage in communities with malaria infections. We show that it is in the individual’s self interest to use the ITNs as long as the malaria is present in the community. Such an optimal ITN usage will significantly decrease the malaria prevalence and under some conditions may even lead to complete eradication of the disease.
文摘Purpose: The relationship between acute exercise and executive functions in college students with attention deficit hyperactivity disorder (ADHD) has not been clearly established. The purpose of this preliminary study was to examine the difference in cognitive performance between college students with and without ADHD and to explore the effects of acute exercise on multiple aspects of executive functions and on serum brain derived neurotrophic factor (BDNF). Methods: College students (normal: n = 10; ADHD: n = 10) performed the Stroop Test, Trail Making Test, and Digit Span Test prior to and after an acute exercise intervention. Blood samples were obtained prior to the pre-test cognitive test performance and then again after exercise and prior to the post-test cognitive test performance. Results: Students with ADHD exhibited impaired executive functions, particularly on inhibition. Additionally, while acute exercise improved all aspects of executive functions in those without ADHD, acute exercise only improved inhibitory performance for those with ADHD. Further, BDNF was not influenced by acute exercise regardless of the subjects' ADHD status. Conclusion: These results provide preliminary evidence for exercise as a potential adjunct treatment for benefitting inhibition in college students with ADHD.
基金The work of this author was partially supported by the NSF Grant DMS-1620168.
文摘This paper develops and analyzes a new family of dual-wind discontinuous Galerkin(DG)methods for stationary Hamilton-Jacobi equations and their vanishing viscosity regularizations.The new DG methods are designed using the DG fnite element discrete calculus framework of[17]that defnes discrete diferential operators to replace continuous differential operators when discretizing a partial diferential equation(PDE).The proposed methods,which are non-monotone,utilize a dual-winding methodology and a new skewsymmetric DG derivative operator that,when combined,eliminate the need for choosing indeterminable penalty constants.The relationship between these new methods and the local DG methods proposed in[38]for Hamilton-Jacobi equations as well as the generalized-monotone fnite diference methods proposed in[13]and corresponding DG methods proposed in[12]for fully nonlinear second order PDEs is also examined.Admissibility and stability are established for the proposed dual-wind DG methods.The stability results are shown to hold independent of the scaling of the stabilizer allowing for choices that go beyond the Godunov barrier for monotone schemes.Numerical experiments are provided to gauge the performance of the new methods.
文摘Youth athletes are ideal candidates for novel therapeutic motor learning interventions that leverage the plasticity of the central nervous system to promote desirable biomechanical adaptions.We summarize the empirical data supporting the three pillars of the Optimizing Performance Through Intrinsic Motivation and Attention for Learning(OPTIMAL)theory of motor learning and expand on potential neurophysiologic mechanisms that will support enhanced movement mechan-ics in youth to optimize prevention programs for reduced injury risk,injury rehabilitation,exercise performance,and play(Prevention Rehabilitation Exercise Play;PREP).Specifically,we highlight the role of motivational factors to promote the release of dopamine that could accelerate motor performance and learning adaptations.Further,we detail the potential for an external focus of attention to shift attentional allocation and increase brain activity in regions important for sensorimotor integration to facilitate primary motor cortex efficiency.This manuscript serves to provide the most current data in support of the application of OPTIMAL PREP training strategies of the future.
基金partly supported by a Grant-in-Aid for Scientific Research (C) (24570130 to M.F.). E.F.P.support through a Canada Research Chair. L.P.K.+3 种基金the funding support over the years from Canadian Institutes of Health Research (MOP62704 to EFP and LPK DDP-79122 to LPK, KCK and EFP) ISTPCanada (ICRD08-15)Ministry of Research and Innovation (Ontario, Canada) and Bio Discovery Toronto
文摘Orotidine 5'-monophosphate decarboxylase (ODCase) is known as one of the most proficient enzymes. The enzyme catalyzes the last reaction step of the de novo pyrimidine biosynthesis, the conversion from orotidine 5'-monophosphate (OMP) to uridine 5'-mono- phosphate. The enzyme is found in all three domains of life, Bacteria, Eukarya and Archaea. Multiple sequence alignment of 750 putative ODCase sequences resulted in five distinct groups. While the universally conserved DxKxxDx motif is present in all the groups, depending on the groups, several characteristic motifs and residues can be identified. Over 200 crystal structures of ODCases have been determined so far. The structures, together with biochemical assays and computational studies, elucidated that ODCase utilized both transition state stabilization and substrate distortion to accelerate the decarboxylation of its natural substrate. Stabilization of the vinyl anion intermediate by a conserved lysine residue at the catalytic site is considered the largest contributing factor to catalysis, while bending of the carboxyl group from the plane of the aromatic pyrimidine ring of OMP accounts for substrate distortion. A number of crystal structures of ODCases complexed with potential drug candidate molecules have also been determined, including with 6-iodo- uridine, a potential antimalarial agent.
文摘Countless studies have been devoted to the scientific evaluation of the safety and/or efficacy of botanical natural products.Investigators involved in such studies face a unique set of challenges.Natural products differ from their pharmaceutical counterparts in that they are typically complex mixtures,for which the identities and quantities of components present are not known.To further complicate matters,the composition of these mixtures will vary depending on source material and method of preparation.Investigators conducting clinical trials with complex botanical natural products must choose from a myriad of potential preparations,which may vary greatly in composition.In making such decisions,it is extremely useful to know which components of the mixture are most likely to be responsible for its purported biological activity(the"active constituents").The gold standard approach for identifying active constituents of botanical natural products is bioassay-guided fractionation,in which the mixture is subjected to successive rounds of purification and bioassays until an active compound is identified.Bioassay guided fractionation has historically played a critical role in drug discovery,but is,nonetheless,fraught with challenges.The process is biased towards the most abundant and easily isolatable mixture components,which may not be the most biologically active.Furthermore,if multiple compounds contribute either additively,antagonistically,or synergistically to the observed biological activity of the mixture,activity may be lost upon isolation.As a complementary strategy to bioassay-guided fractionation,our research group has developed untargeted metabolomics strategies to aid in the identification of bioactive mixture components.These strategies involve profiling botanical mixtures using ultraperformance chromatography coupled to high resolving power mass spectrometry.The resulting chemical data is then integrated with biological assay data using biochemometric data analysis strategies.Several case studies will be presented illustrating how this approach can be applied,including for the identification of compounds from the botanical green(Camellia sinensis)that inhibit drug metabolizing enzymes.Such studies are being conducted as part of the Center for Excellence in Natural Product Drug Interaction Studies(Na PDI),which is supported by a cooperative agreement with the National Center for Complementary and Integrative Health,a component of the National Institutes of Health.
基金work of the first author was partially supported by the NSF grant DMS-1318486The work of the second author was partially supported by the startup grant from University of Central Florida.
文摘This paper develops and analyzes a fully discrete finite element method for a class of semilinear stochastic partial differential equations(SPDEs)with multiplicative noise.The nonlinearity in the diffusion term of the SPDEs is assumed to be globally Lipschitz and the nonlinearity in the drift term is only assumed to satisfy a one-sided Lipschitz condition.These assumptions are the same ones as the cases where numerical methods for general nonlinear stochastic ordinary differential equations(SODEs)under“minimum assumptions”were studied.As a result,the semilinear SPDEs considered in this paper are a direct generalization of these nonlinear SODEs.There are several difficulties which need to be overcome for this generalization.First,obviously the spatial discretization,which does not appear in the SODE case,adds an extra layer of difficulty.It turns out a spatial discretization must be designed to guarantee certain properties for the numerical scheme and its stiffness matrix.In this paper we use a finite element interpolation technique to discretize the nonlinear drift term.Second,in order to prove the strong convergence of the proposed fully discrete finite element method,stability estimates for higher order moments of the H1-seminorm of the numerical solution must be established,which are difficult and delicate.A judicious combination of the properties of the drift and diffusion terms and some nontrivial techniques is used in this paper to achieve the goal.Finally,stability estimates for the second and higher order moments of the L^(2)-norm of the numerical solution are also difficult to obtain due to the fact that the mass matrix may not be diagonally dominant.This is done by utilizing the interpolation theory and the higher moment estimates for the H1-seminorm of the numerical solution.After overcoming these difficulties,it is proved that the proposed fully discrete finite element method is convergent in strong norms with nearly optimal rates of convergence.Numerical experiment results are also presented to validate the theoretical results and to demonstrate the efficiency of the proposed numerical method.
文摘Purpose:The purpose of this literature review was to investigate how cooperative learning(CL)has been conceptualized and implemented in Chinese physical education(PE).CL is one of the most influential and widespread areas of theory,research,and practice in western education.With the promotion of Chinese government policies,CL has become a popular field of research and was widely used as a pedagogical practice in Chinese.Design/Approach/Methods:Shulruf’s five methodological steps were utilized as the process of screening and selecting relevant studies.Inductive analysis and constant comparison were conducted for analyzing the chosen literature.Findings:The analytic induction revealed four key themes:(a)historical development,(b)policy influence,(c)conceptualization of CL,and(d)implementation of CL.We found that the conceptualization of CL in Chinese PE was ambiguous,and the implementation of CL was predominantly documented by quantitative research methods.In addition,few studies were conducted at the elementary school level.Originality/Value:This is a comprehensive literature review on CL in Chinese PE.Findings and recommendations in this article will be beneficial for policymakers,scholars,and PE teachers to better understand and promote CL in China.
文摘This paper is concerned with developing accurate and efficient numerical methods for one-dimensional fully nonlinear second order elliptic and parabolic partial differential equations (PDEs). In the paper we present a general framework for constructing high order interior penalty discontinuous Galerkin (IP-DG) methods for approximating viscosity solutions of these fully nonlinear PDEs. In order to capture discontinuities of the second order derivative uxx of the solution u, three independent functions p1,p2 and p3 are introduced to represent numerical derivatives using various one-sided limits. The proposed DG frame- work, which is based on a nonstandard mixed formulation of the underlying PDE, embeds a nonlinear problem into a mostly linear system of equations where the nonlinearity has been modified to include multiple values of the second order derivative uxz. The proposed framework extends a companion finite difference framework developed by the authors in [9] and allows for the approximation of fully nonlinear PDEs using high order polynomials and non-uniform meshes. In addition to the nonstandard mixed formulation setting, another main idea is to replace the fully nonlinear differential operator by a numerical operator which is consistent with the differential operator and satisfies certain monotonicity (called g-monotonicity) properties. To ensure such a g-monotonicity, the crux of the construction is to introduce the numerical moment, which plays a critical role in the proposed DG frame- work. The g-monotonicity gives the DG methods the ability to select the mathematically "correct" solution (i.e., the viscosity solution) among all possible solutions. Moreover, the g-monotonicity allows for the possible development of more efficient nonlinear solvers as the special nonlinearity of the algebraic systems can be explored to decouple the equations. This paper also presents and analyzes numerical results for several numerical test problems which are used to guage the accuracy and efficiency of the proposed DG methods.
文摘Youth may be particularly responsive to motor learning training strategies that support injury-resistant movement mechanics in youth for prevention programs that reduce injury risk,injury rehabilitation,exercise performance,and play more gener-ally(Optimizing Performance Through Intrinsic Motivation and Attention for Learning Prevention Rehabilitation Exercise Play;OPTIMAL PREP)One purpose of the present manuscript was to provide clinical applications and tangible examples of how to implement the proposed techniques derived from OPTIMAL theory into PREP strategies for youth.A secondary purpose was to review recent advances in technology that support the clinical application of OPTIMAL PREP strategies without extensive resources/programming knowledge to promote evidence-driven tools that will support practitioner feedback delivery.The majority of examples provided are within the context of anterior cruciate ligament(ACL)injury rehabilitation,but we emphasize the potential for OPTIMAL PREP strategies to be applied to a range of populations and training scenarios that will promote injury resistance and keep youth active and healthy.