Whilst industrial robots have been widely used in many industrial sectors, they are predominantly used in a structured factory environment. In recent years, off-site robotics have been investigated extensively and the...Whilst industrial robots have been widely used in many industrial sectors, they are predominantly used in a structured factory environment. In recent years, off-site robotics have been investigated extensively and there are some promising candidates emerging. One such category of robots is exoskeleton robots and this paper provides an in-depth assessment of their suitability in assisting human operators in undertaking manual operations typically found in the construction industry. This work aims to objectively assess the advantages and disadvantages of these two suits and provide recommendations for further improvements of similar system designs. The paper focuses on the passive exoskeleton robotic suits which are commercially available. Three types of activities are designed and a mechatronic methodology has been designed and implemented to capture visual data in order to assess these systems in comparison with normal human operations. The study suggests that these passive suits do reduce the effort required by human operators to undertake the same construction tasks as evidenced by the results from one focused study, though a number of improvements could be made to improve their performance for wider adoption.展开更多
Taking the actual project of teaching and researching process for example, the relationship between the industrial engineering and product development is discussed. And use the novel visualization technology to suppor...Taking the actual project of teaching and researching process for example, the relationship between the industrial engineering and product development is discussed. And use the novel visualization technology to support the industrial engineering and product development. How to use the new computer modeling and simulating technologies to support the product development and industrial engineering, is introduced especially. The support includes both domestic products and industrial systems. The visualization and computer technologies take a very impo[tant role in some system or multi-direction modeling, those technologies mentioned above can help the industrial engineers study the effect of design on the whole life circle, including the producing steps. So the engineers can avoid making the wrong decision which may cause bad effects on the whole industrial engineering.展开更多
Nanomanufacturing(NM),developed over the past three decades,bridges nanosciencediscoveries tonanotechnology products by scaled-up,reliable,and cost-effective manufacturing materials,structures,devices,and systems at t...Nanomanufacturing(NM),developed over the past three decades,bridges nanosciencediscoveries tonanotechnology products by scaled-up,reliable,and cost-effective manufacturing materials,structures,devices,and systems at the nanoscale(1-100 nm).At this scale,physical and chemical properties of the materials and tools have been dominated by classical Newtonian mechanics,although quantum confinementeffects become increasinglyobservable.Anumber of top-down and bottom-up approaches were developed,including nanomechanical machining,nanolithography,energy beam machining,deposition and etching,nanoprinting,nano assembly,nano replication,etc.[1].These techniques enabled a range of applications from medical imaging and renewable energy to sensor devices and quantum computing.展开更多
We show that organic photovoltaics(OPVs)are suitable for high-speed optical wireless data receivers that can also harvest power.In addition,these OPVs are of particular interest for indoor applications,as their bandga...We show that organic photovoltaics(OPVs)are suitable for high-speed optical wireless data receivers that can also harvest power.In addition,these OPVs are of particular interest for indoor applications,as their bandgap is larger than that of silicon,leading to better matching to the spectrum of artificial light.By selecting a suitable combination of a narrow bandgap donor polymer and a nonfullerene acceptor,stable OPVs are fabricated with a power conversion efficiency of 8.8%under 1 Sun and 14%under indoor lighting conditions.In an optical wireless communication experiment,a data rate of 363 Mb/s and a simultaneous harvested power of 10.9 mW are achieved in a 4-by-4 multipleinput multiple-output(MIMO)setup that consists of four laser diodes,each transmitting 56 mW optical power and four OPV cells on a single panel as receivers at a distance of 40 cm.This result is the highest reported data rate using OPVs as data receivers and energy harvesters.This finding may be relevant to future mobile communication applications because it enables enhanced wireless data communication performance while prolonging the battery life in a mobile device.展开更多
文摘Whilst industrial robots have been widely used in many industrial sectors, they are predominantly used in a structured factory environment. In recent years, off-site robotics have been investigated extensively and there are some promising candidates emerging. One such category of robots is exoskeleton robots and this paper provides an in-depth assessment of their suitability in assisting human operators in undertaking manual operations typically found in the construction industry. This work aims to objectively assess the advantages and disadvantages of these two suits and provide recommendations for further improvements of similar system designs. The paper focuses on the passive exoskeleton robotic suits which are commercially available. Three types of activities are designed and a mechatronic methodology has been designed and implemented to capture visual data in order to assess these systems in comparison with normal human operations. The study suggests that these passive suits do reduce the effort required by human operators to undertake the same construction tasks as evidenced by the results from one focused study, though a number of improvements could be made to improve their performance for wider adoption.
文摘Taking the actual project of teaching and researching process for example, the relationship between the industrial engineering and product development is discussed. And use the novel visualization technology to support the industrial engineering and product development. How to use the new computer modeling and simulating technologies to support the product development and industrial engineering, is introduced especially. The support includes both domestic products and industrial systems. The visualization and computer technologies take a very impo[tant role in some system or multi-direction modeling, those technologies mentioned above can help the industrial engineers study the effect of design on the whole life circle, including the producing steps. So the engineers can avoid making the wrong decision which may cause bad effects on the whole industrial engineering.
基金Support from the European Commission for conducting research into the "A Process Chain and Equipment for Volume Production of Polymeric Micro-Tubular Components for Medical Device Applications (POLYTUBES)" (NMP2-SE-2009-229266)
文摘Nanomanufacturing(NM),developed over the past three decades,bridges nanosciencediscoveries tonanotechnology products by scaled-up,reliable,and cost-effective manufacturing materials,structures,devices,and systems at the nanoscale(1-100 nm).At this scale,physical and chemical properties of the materials and tools have been dominated by classical Newtonian mechanics,although quantum confinementeffects become increasinglyobservable.Anumber of top-down and bottom-up approaches were developed,including nanomechanical machining,nanolithography,energy beam machining,deposition and etching,nanoprinting,nano assembly,nano replication,etc.[1].These techniques enabled a range of applications from medical imaging and renewable energy to sensor devices and quantum computing.
基金H.H.acknowledges the financial support from the Wolfson Foundation and Royal Society.He also acknowledges financial support from the Engineeringand Physical Sciences Research Council(EPSRC)under the Established Career Fellowship grant EP/RO07101/1The authors acknowledge the EPSRC forfinancial support from the program/project grants EP/KO0042x/1 and EP/RO05281/1L.K.J.acknowledges support from a Marie Sktodowska-Curie Individual Fellowship(European Commission)(MCIF:no.745776)。
文摘We show that organic photovoltaics(OPVs)are suitable for high-speed optical wireless data receivers that can also harvest power.In addition,these OPVs are of particular interest for indoor applications,as their bandgap is larger than that of silicon,leading to better matching to the spectrum of artificial light.By selecting a suitable combination of a narrow bandgap donor polymer and a nonfullerene acceptor,stable OPVs are fabricated with a power conversion efficiency of 8.8%under 1 Sun and 14%under indoor lighting conditions.In an optical wireless communication experiment,a data rate of 363 Mb/s and a simultaneous harvested power of 10.9 mW are achieved in a 4-by-4 multipleinput multiple-output(MIMO)setup that consists of four laser diodes,each transmitting 56 mW optical power and four OPV cells on a single panel as receivers at a distance of 40 cm.This result is the highest reported data rate using OPVs as data receivers and energy harvesters.This finding may be relevant to future mobile communication applications because it enables enhanced wireless data communication performance while prolonging the battery life in a mobile device.