This work presents the design of hollow fiber T-type zeolite membrane modules with different geometric configurations. The module performances were evaluated by pervaporation dehydration of ethanol/water mixtures. Str...This work presents the design of hollow fiber T-type zeolite membrane modules with different geometric configurations. The module performances were evaluated by pervaporation dehydration of ethanol/water mixtures. Strong concentration polarization was found for the modules with big membrane bundles. The concentration polarization was enhanced at high temperature due to the higher water permeation flux. The increase of feed flow could improve water permeation flux for the membrane modules with small membrane bundle.Computational fluid dynamics was used to visualize the flow field distribution inside of the modules with different configurations. The membrane module with seven bundles exhibited highest separation efficiency due to the uniform distribution of flow rate. The packing density could be 10 times higher than that of the tubular membrane module. The hollow fiber membrane module exhibited good stability for ethanol dehydration.展开更多
Influences of alkali oxides doping on the crystal structure, defects and hydration behavior of tricalcium silicate C_3S were investigated by X-ray powder diffraction with the Rietveld method, inductively coupled plasm...Influences of alkali oxides doping on the crystal structure, defects and hydration behavior of tricalcium silicate C_3S were investigated by X-ray powder diffraction with the Rietveld method, inductively coupled plasma optical emission spectroscopy, thermoluminescence and isothermal calorimetry. All the samples were stabilized as T1 form C_3S. Changes in the crystal structure of C_3S could mainly be monitored by changes in lattice parameters, which were closely correlated with the incorporation concentration and substitution types of alkalis. Although alkalis were incorporated at trace level in C_3S, the thermoluminescence and hydration behavior of C_3S were significantly influenced. Initial hydration activity was dramatically increased and highly related to the intensity of the irradiation-induced thermoluminescence peaks at low temperatures due to their direct correlation with defects. The oxygen vacancy sites resulting from the substitution of alkalis for Ca could readily account for the acceleration of the initial hydration of C_3S.展开更多
Anisotropic MnO2 nanostructures,includingα-phase nanowire,α-phase nanorod,δ-phase nanosheet,α+δ-phase nanowire,and amorphous fl occule,were synthesized by a simple hydrothermal method through adjusting the pH of ...Anisotropic MnO2 nanostructures,includingα-phase nanowire,α-phase nanorod,δ-phase nanosheet,α+δ-phase nanowire,and amorphous fl occule,were synthesized by a simple hydrothermal method through adjusting the pH of the precursor solution and using diff erent counterions.The catalytic properties of the as-synthesized MnO2 nanomaterials in the selective oxidation of benzyl alcohol(BA)and 5-hydroxymethylfurfural(HMF)were evaluated.The eff ects of micromorphology,phase structure,and redox state on the catalytic activity of MnO2 nanomaterials were investigated.The results showed that the intrinsic catalytic oxidation activity was mainly infl uenced by the unique anisotropic structure and surface chemical property of MnO2.With one-dimensional and 2D structures exposing highly active surfaces,unique crystal forms,and high oxidation state of Mn,the intrinsic activities for MnO2 catalysts synthesized in pH 1,5,and 10 solutions(denoted as MnO2-pH1,MnO2-pH5,and MnO2-pH10,respectively)were twice higher than those of other MnO2 catalysts in oxidation of BA and HMF.With a moderate aspect ratio,theα+δnanowire of MnO2-pH10 exhibited the highest average oxidation state,most abundant active sites,and the best catalytic oxidation activity.展开更多
Noble metal nanoparticles are attractive catalytic materials on account of their novel optical,electrical and magnetic properties compared with bulk solids.Nanosized alloys attract considerable attentions due to the i...Noble metal nanoparticles are attractive catalytic materials on account of their novel optical,electrical and magnetic properties compared with bulk solids.Nanosized alloys attract considerable attentions due to the increasing demands,and outstanding chemical and physical properties via cooperative interactions for high performance catalysts.In this research,carbon-supported展开更多
The design of three-dimensional(30)core-shell hetercistructures is an efficient method to achieve high mass specific capacity of electroactive materials under high mass loading.In this work,porous Ni_(4)Co1-0H nanoshe...The design of three-dimensional(30)core-shell hetercistructures is an efficient method to achieve high mass specific capacity of electroactive materials under high mass loading.In this work,porous Ni_(4)Co1-0H nanosheets with a mass loading of 7.7 mg·cm^(-2) are obtained by using Ni_(4)Cor(NO_(3))_(2)(0H)_(4) supported on the CuO nanowires as precursors via an unavoidable electrochemically induced phase reconstruction.During the electrochemical reconstruction process,the N03-anions in Ni_(4)Cor(N0_(3))_(2)(0H)_(4) are easily replaced by OH-anions in the electrolyte.The phase reconstruction is accompanied by the decrease of ionic diffusion.:resistance and the increase of pore volume,and the shift of binding energy.The obtained Ni4Co1-0H nanosheets show a high:mass specific capacity of 363.6 mAh·g^(-1) at 5 mA·cm^(-2).The as-fabricated alkaline hybrid supercapacitor and Ni-Zn battery deliver high energy density of 293.1 and 604.9 Wh·kg^(-1),respectively,indicating.excellent alkaline energy storage performance.展开更多
基金Supported by the National Natural Science Foundation of China(21222602,21490585 and 21176117)National High-tech R&D Program of China(2015AA03A602)+4 种基金the Key Project of Chinese Ministry of Education(212060)the Outstanding Young Fund of Jiangsu Province(BK2012040)Young Fund of Jiangsu Province(BK20130915)the "Six Top Talents" and "333 Talent Project" of Jiangsu Province,a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Innovation Project for Graduate Student of Jiangsu Province(KYLX15-0790)
文摘This work presents the design of hollow fiber T-type zeolite membrane modules with different geometric configurations. The module performances were evaluated by pervaporation dehydration of ethanol/water mixtures. Strong concentration polarization was found for the modules with big membrane bundles. The concentration polarization was enhanced at high temperature due to the higher water permeation flux. The increase of feed flow could improve water permeation flux for the membrane modules with small membrane bundle.Computational fluid dynamics was used to visualize the flow field distribution inside of the modules with different configurations. The membrane module with seven bundles exhibited highest separation efficiency due to the uniform distribution of flow rate. The packing density could be 10 times higher than that of the tubular membrane module. The hollow fiber membrane module exhibited good stability for ethanol dehydration.
基金Funded by the National Natural Science Foundation of China(Nos.51302256 and 51672260)the Synergetic Innovation Center for Advanced Materials and State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)
文摘Influences of alkali oxides doping on the crystal structure, defects and hydration behavior of tricalcium silicate C_3S were investigated by X-ray powder diffraction with the Rietveld method, inductively coupled plasma optical emission spectroscopy, thermoluminescence and isothermal calorimetry. All the samples were stabilized as T1 form C_3S. Changes in the crystal structure of C_3S could mainly be monitored by changes in lattice parameters, which were closely correlated with the incorporation concentration and substitution types of alkalis. Although alkalis were incorporated at trace level in C_3S, the thermoluminescence and hydration behavior of C_3S were significantly influenced. Initial hydration activity was dramatically increased and highly related to the intensity of the irradiation-induced thermoluminescence peaks at low temperatures due to their direct correlation with defects. The oxygen vacancy sites resulting from the substitution of alkalis for Ca could readily account for the acceleration of the initial hydration of C_3S.
基金the National Natural Science Foundation of China(No.21503187)the“Light of West China”Program of the Chinese Academy of Sciences for the financial support.
文摘Anisotropic MnO2 nanostructures,includingα-phase nanowire,α-phase nanorod,δ-phase nanosheet,α+δ-phase nanowire,and amorphous fl occule,were synthesized by a simple hydrothermal method through adjusting the pH of the precursor solution and using diff erent counterions.The catalytic properties of the as-synthesized MnO2 nanomaterials in the selective oxidation of benzyl alcohol(BA)and 5-hydroxymethylfurfural(HMF)were evaluated.The eff ects of micromorphology,phase structure,and redox state on the catalytic activity of MnO2 nanomaterials were investigated.The results showed that the intrinsic catalytic oxidation activity was mainly infl uenced by the unique anisotropic structure and surface chemical property of MnO2.With one-dimensional and 2D structures exposing highly active surfaces,unique crystal forms,and high oxidation state of Mn,the intrinsic activities for MnO2 catalysts synthesized in pH 1,5,and 10 solutions(denoted as MnO2-pH1,MnO2-pH5,and MnO2-pH10,respectively)were twice higher than those of other MnO2 catalysts in oxidation of BA and HMF.With a moderate aspect ratio,theα+δnanowire of MnO2-pH10 exhibited the highest average oxidation state,most abundant active sites,and the best catalytic oxidation activity.
文摘Noble metal nanoparticles are attractive catalytic materials on account of their novel optical,electrical and magnetic properties compared with bulk solids.Nanosized alloys attract considerable attentions due to the increasing demands,and outstanding chemical and physical properties via cooperative interactions for high performance catalysts.In this research,carbon-supported
基金supported by the National Natural Science Foundation of China(No.51772148)Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP,PPZY2015B128)the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The design of three-dimensional(30)core-shell hetercistructures is an efficient method to achieve high mass specific capacity of electroactive materials under high mass loading.In this work,porous Ni_(4)Co1-0H nanosheets with a mass loading of 7.7 mg·cm^(-2) are obtained by using Ni_(4)Cor(NO_(3))_(2)(0H)_(4) supported on the CuO nanowires as precursors via an unavoidable electrochemically induced phase reconstruction.During the electrochemical reconstruction process,the N03-anions in Ni_(4)Cor(N0_(3))_(2)(0H)_(4) are easily replaced by OH-anions in the electrolyte.The phase reconstruction is accompanied by the decrease of ionic diffusion.:resistance and the increase of pore volume,and the shift of binding energy.The obtained Ni4Co1-0H nanosheets show a high:mass specific capacity of 363.6 mAh·g^(-1) at 5 mA·cm^(-2).The as-fabricated alkaline hybrid supercapacitor and Ni-Zn battery deliver high energy density of 293.1 and 604.9 Wh·kg^(-1),respectively,indicating.excellent alkaline energy storage performance.