The present work proposes a methodological approach for modeling decisions regarding energy reduction in an elevator. This is achieved with the integration of existing as well as acquired knowledge, in a decision modu...The present work proposes a methodological approach for modeling decisions regarding energy reduction in an elevator. This is achieved with the integration of existing as well as acquired knowledge, in a decision module implemented in the electronics of an elevator. So far, elevators do not exploit information regarding their recent usage. In the developed system decisions are driven based on information arising from monitoring the use of the elevator. Monitoring provides various records of usage which consequently are used to predict elevator’s future usage and to adapt accordingly its functioning. Till now, there are only elevators that encompass in their electronics algorithms with if then rules in order to control elevator’s functioning. However, these if then rules are based only on good practice knowledge of similar elevators installed in similar buildings. Even this knowledge which unavoidably is associated with uncertainty is not encoded in a mathematically consisted way in the algorithms. The design, the implementation and a first pilot evaluation study of an elevator’s intelligent decision module are presented. The study concludes that the presented application sufficiently reduces energy consumption through properly controlled functioning.展开更多
All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)in...All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)into backbones of polymer donor(P_(D))or polymer acceptor(P_(A))has been demonstrated as an efficient approach to enhance both the photovoltaic(PV)and mechanical properties of the all-PSCs.However,length dependency of FCBS on certain all-PSC related properties has not been systematically explored.In this regard,we report a series of new non-conjugated P_(A)s by incorporating FCBS with various lengths(2,4,and 8 carbon atoms in thioalkyl segments).Unlike com-mon studies on so-called side-chain engineering,where longer side chains would lead to better solubility of those resulting polymers,in this work,we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length(i.e.,C2)in P_(A) named PYTS-C2.Its all-PSC achieves a high efficiency of 11.37%,and excellent mechanical robustness with a crack onset strain of 12.39%,significantly superior to those of the other P_(A)s.These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs,providing an effective strategy to fine-tune the structures of P_(A)s for highly efficient and mechanically robust PSCs.展开更多
Diamond anvil cell techniques have been improved to allow access to the multimegabar ultrahigh-pressure region for exploring novel phenomena in condensedmatter.However,the onlyway to determine crystal structures of ma...Diamond anvil cell techniques have been improved to allow access to the multimegabar ultrahigh-pressure region for exploring novel phenomena in condensedmatter.However,the onlyway to determine crystal structures of materials above 100 GPa,namely,X-ray diffraction(XRD),especially for lowZ materials,remains nontrivial in the ultrahigh-pressure region,even with the availability of brilliant synchrotron X-ray sources.In thiswork,we performa systematic study,choosing hydrogen(the lowest X-ray scatterer)as the subject,to understand how to better perform XRD measurements of low Z materials at multimegabar pressures.The techniques that we have developed have been proved to be effective in measuring the crystal structure of solid hydrogen up to 254GPa at room temperature[C.Ji et al.,Nature 573,558–562(2019)].Wepresent our discoveries and experienceswith regard to several aspects of thiswork,namely,diamond anvil selection,sample configuration for ultrahigh-pressure XRDstudies,XRDdiagnostics for low Z materials,and related issues in data interpretation and pressure calibration.Webelieve that these methods can be readily extended to other low Z materials and can pave the way for studying the crystal structure of hydrogen at higher pressures,eventually testing structural models of metallic hydrogen.展开更多
The nonlinear affine Goldstone model of the emergent gravity, built on the nonlinearly realized/ hidden affine symmetry, is concisely revisited. Beyond General Relativity, the explicit violation of general invariance/...The nonlinear affine Goldstone model of the emergent gravity, built on the nonlinearly realized/ hidden affine symmetry, is concisely revisited. Beyond General Relativity, the explicit violation of general invariance/relativity, under preserving general covariance, is exposed. Dependent on a nondynamical affine connection, a generally covariant second-order effective Lagrangian for metric gravity is worked out, with the general relativity violation and the gravitational dark matter serving as the signatures of emergence.展开更多
The differential event rate for direct detection of dark matter,both the time averaged and the modulated one due to the motion of the Earth,are discussed.The calculations focus on relatively light cold dark matter can...The differential event rate for direct detection of dark matter,both the time averaged and the modulated one due to the motion of the Earth,are discussed.The calculations focus on relatively light cold dark matter candidates (WIMP) and low energy transfers.It is shown that for sufficiently light WIMPs the extraction of relatively large nucleon cross sections is possible.Furthermore for some WIMP masses the modulation amplitude may change sign,meaning that,in such a case,the maximum rate may occur six months later than naively expected.This effect can be exploited to yield information about the mass of the dark matter candidate,if and when the observation of the modulation of the event rate is established.展开更多
文摘The present work proposes a methodological approach for modeling decisions regarding energy reduction in an elevator. This is achieved with the integration of existing as well as acquired knowledge, in a decision module implemented in the electronics of an elevator. So far, elevators do not exploit information regarding their recent usage. In the developed system decisions are driven based on information arising from monitoring the use of the elevator. Monitoring provides various records of usage which consequently are used to predict elevator’s future usage and to adapt accordingly its functioning. Till now, there are only elevators that encompass in their electronics algorithms with if then rules in order to control elevator’s functioning. However, these if then rules are based only on good practice knowledge of similar elevators installed in similar buildings. Even this knowledge which unavoidably is associated with uncertainty is not encoded in a mathematically consisted way in the algorithms. The design, the implementation and a first pilot evaluation study of an elevator’s intelligent decision module are presented. The study concludes that the presented application sufficiently reduces energy consumption through properly controlled functioning.
基金the Swedish Research Council (2016-06146,2019-02345)Swedish Research Council (grant no.2020-05223)+7 种基金the Swedish Research Council Formas,the Swedish Energy Agency (52473-1)the Wallenberg Foundation (2017.0186 and 2016.0059) for financial supportsupported by the National Research Foundation of Korea (NRF-2017M3A7B8065584 and 2020R1A4A1018516)Support from the National Natural Science Foundation of China (61774077)the Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province (2019B1515120073)the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (No.2020B1212030010)Support from Sino-Danish Center for Education and ResearchSwedish Energy Agency (grant no.45420-1)
文摘All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)into backbones of polymer donor(P_(D))or polymer acceptor(P_(A))has been demonstrated as an efficient approach to enhance both the photovoltaic(PV)and mechanical properties of the all-PSCs.However,length dependency of FCBS on certain all-PSC related properties has not been systematically explored.In this regard,we report a series of new non-conjugated P_(A)s by incorporating FCBS with various lengths(2,4,and 8 carbon atoms in thioalkyl segments).Unlike com-mon studies on so-called side-chain engineering,where longer side chains would lead to better solubility of those resulting polymers,in this work,we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length(i.e.,C2)in P_(A) named PYTS-C2.Its all-PSC achieves a high efficiency of 11.37%,and excellent mechanical robustness with a crack onset strain of 12.39%,significantly superior to those of the other P_(A)s.These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs,providing an effective strategy to fine-tune the structures of P_(A)s for highly efficient and mechanically robust PSCs.
基金This research was supported by the National Natural Science Foundation of China under Award No.U1930401the Department of Energy(DOE),Office of Basic Energy Science,Division of Materials Sciences and Engineering under Award No.DE-FG02-99ER45775
文摘Diamond anvil cell techniques have been improved to allow access to the multimegabar ultrahigh-pressure region for exploring novel phenomena in condensedmatter.However,the onlyway to determine crystal structures of materials above 100 GPa,namely,X-ray diffraction(XRD),especially for lowZ materials,remains nontrivial in the ultrahigh-pressure region,even with the availability of brilliant synchrotron X-ray sources.In thiswork,we performa systematic study,choosing hydrogen(the lowest X-ray scatterer)as the subject,to understand how to better perform XRD measurements of low Z materials at multimegabar pressures.The techniques that we have developed have been proved to be effective in measuring the crystal structure of solid hydrogen up to 254GPa at room temperature[C.Ji et al.,Nature 573,558–562(2019)].Wepresent our discoveries and experienceswith regard to several aspects of thiswork,namely,diamond anvil selection,sample configuration for ultrahigh-pressure XRDstudies,XRDdiagnostics for low Z materials,and related issues in data interpretation and pressure calibration.Webelieve that these methods can be readily extended to other low Z materials and can pave the way for studying the crystal structure of hydrogen at higher pressures,eventually testing structural models of metallic hydrogen.
文摘The nonlinear affine Goldstone model of the emergent gravity, built on the nonlinearly realized/ hidden affine symmetry, is concisely revisited. Beyond General Relativity, the explicit violation of general invariance/relativity, under preserving general covariance, is exposed. Dependent on a nondynamical affine connection, a generally covariant second-order effective Lagrangian for metric gravity is worked out, with the general relativity violation and the gravitational dark matter serving as the signatures of emergence.
文摘The differential event rate for direct detection of dark matter,both the time averaged and the modulated one due to the motion of the Earth,are discussed.The calculations focus on relatively light cold dark matter candidates (WIMP) and low energy transfers.It is shown that for sufficiently light WIMPs the extraction of relatively large nucleon cross sections is possible.Furthermore for some WIMP masses the modulation amplitude may change sign,meaning that,in such a case,the maximum rate may occur six months later than naively expected.This effect can be exploited to yield information about the mass of the dark matter candidate,if and when the observation of the modulation of the event rate is established.