期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Piezoelectric nanofoams with the interlaced ultrathin graphene confining Zn–N–C dipoles for efficient piezocatalytic H_(2) evolution under low-frequency vibration
1
作者 Penghui Hu Yan Xu +10 位作者 Yanhua Lei Jie Yuan Rui Lei Rong Hu Junkang Chen Difa Xu Shiying Zhang Ping Liu Xiangchao Zhang Xiaoqing Qiu Wenhui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期115-122,I0004,共9页
Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configuration... Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configurations,with hypersensitivity for mechanical stress,the piezoelectricity is created on the nonpiezoelectric graphene,and the hierarchical ZnNG exhibits obvious piezocatalytic activity of water splitting for H_(2) production even under mild agitation.The corresponding rate of H_(2) production is about 14.65 μmol g^(-1)h^(-1).It triggers a breakthrough in piezocatalytic H_(2) evolution under low-frequency vibration,and takes a significant step forward for piezocatalysis towards practical applications.Furthermore,the presented concept of confining atomic polar configuration for engineering piezoelectricity would open up new horizon for constructing new-type piezoelectrics based on both piezoelectric and nonpiezoelectric materials. 展开更多
关键词 Piezocatalysis Water splitting for H_(2)production Low-frequency vibration Ultrathin graphene confining Zn–N–C DIPOLES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部