An air-stable photovoltaic device based on znic oxide nanoparticles (ZNP) in an inverted structure of indium tin oxide (ITO)/ZnO/poly (3-hexylthiophene) (P3HT): [6,6]-phenyl C61-butyric acid methyl ester (P...An air-stable photovoltaic device based on znic oxide nanoparticles (ZNP) in an inverted structure of indium tin oxide (ITO)/ZnO/poly (3-hexylthiophene) (P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PCBM)/MoO3/Ag is studied. We fm.d that the optimum thickness of the MoO3 layer is 2 nm. When the MoO3 blocking layer is introduced, the fill factor of the devices is increased from 29% to 40%, the power conversion efficiency is directly promoted from 0.35% to 1.27%.The stability under ambient conditions of this inverted structure device much is better due to the improved stability at the polymer/Ag interface. The enhancement is attributed to the high carriers mobility and suitable band gap of MoO3 layer.展开更多
We report the enhanced performance of organic solar cells(OSCs) based on regioregular poly(3-hexylthiophene)(P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester(PCBM) blend by using dihydroxybenzene ...We report the enhanced performance of organic solar cells(OSCs) based on regioregular poly(3-hexylthiophene)(P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester(PCBM) blend by using dihydroxybenzene as additive in the active layer.The effect of the content of the additives on electrical characteristics of the device is studied.The device with 0.2 wt% dihydroxybenzene additive achieves the best power conversion efficiency(PCE) of 4.58% with Jsc of 12.5 mA/cm2,Voc of 0.65 V,and FF of 66.6% under simulated solar illumination of AM 1.5G(100 mW/cm2),compared with the control device with PCE of 3.39%(35% improvement compared with the control device).The XRD measurement reveals that the addition of additives induces the crystallization of P3HT and establishes good inter-network to increase the contact area of donor and acceptor,and then helps charge to be effectively transferred to the electrode to reduce the chance of recombination.All evidences indicate that the dihydroxybenzene is likely to be a promising new type additive that can enhance the performance of organic bulk heterojunction solar cells.展开更多
The influence of the polarized state of blue light on light scattering in InGaN blue chip nano-crystal luminescent glass for solid state lighting is investigated.Based on Rayleigh-Debye approximation theory,theoretica...The influence of the polarized state of blue light on light scattering in InGaN blue chip nano-crystal luminescent glass for solid state lighting is investigated.Based on Rayleigh-Debye approximation theory,theoretical relationships between the light scattering turbidity and wavelength of the incident light,radius and refractive index of the nano-crystals are established to simulate the situations in yttrium aluminate garnet(YAG),silicate and oxynitride based luminescence glass.It is revealed that the scattering turbidity in luminescent glass turns to be the smallest as the effective refractive index of nanocrystals is equal to that of parent glass,and the scattering turbidity for the vertically polarized incident light is greater than that for the un-polarized incident light,while that for the horizontally polarized incident light is smaller than that for the unpolarized incident light under the same conditions.展开更多
The effect of a new interfacial buffer layer material,rhenium oxide(ReO3),on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene)(P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid...The effect of a new interfacial buffer layer material,rhenium oxide(ReO3),on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene)(P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester(PCBM) blend is investigated.The effect of the thickness of the oxide layer on electrical characteristics of the device is also studied.Compared with traditional devices,by inserting a 10 nm-thick ReO3 as the anode buffer layer,a power conversion efficiency(PCE) of 2.8 %(a 37% improvement compared with the control devices) can be obtained with Jsc of 13.6 mA/cm2,Voc of 0.45 V,and a fill factor(FF) of 53.6% under the simulated AM1.5 G 100 mW/cm2 illumination in air.It is indicated that ReO3 can be used as an effective buffer layer to enhance the polymer bulk heterojunction(BHJ) photovoltaic cell efficiency.展开更多
基金supported by the National Natural Science Foundation of China (Nos.60876046 and 60976048)the Key Project of Education Ministry of (No.209007)+2 种基金the Tianjin Natural Science Council (No.0ZCKFGX01900)the Scientific Developing Foundation of Tianjin Education Commission (No.20100723)the Tianjin Key Discipline of Material Physics and Chemistry
文摘An air-stable photovoltaic device based on znic oxide nanoparticles (ZNP) in an inverted structure of indium tin oxide (ITO)/ZnO/poly (3-hexylthiophene) (P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PCBM)/MoO3/Ag is studied. We fm.d that the optimum thickness of the MoO3 layer is 2 nm. When the MoO3 blocking layer is introduced, the fill factor of the devices is increased from 29% to 40%, the power conversion efficiency is directly promoted from 0.35% to 1.27%.The stability under ambient conditions of this inverted structure device much is better due to the improved stability at the polymer/Ag interface. The enhancement is attributed to the high carriers mobility and suitable band gap of MoO3 layer.
基金supported by the National Natural Science Foundation of China (Nos.60876046 and 60976048)the Key Project of Chinese Ministry of Education (No.209007)+1 种基金Tianjin Natural Science Council (No.10ZCKFGX01900)the Scientific Developing Foundation of Tianjin Education Commission (No.20100723) and the Tianjin Key Discipline of Material Physics and Chemistry
文摘We report the enhanced performance of organic solar cells(OSCs) based on regioregular poly(3-hexylthiophene)(P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester(PCBM) blend by using dihydroxybenzene as additive in the active layer.The effect of the content of the additives on electrical characteristics of the device is studied.The device with 0.2 wt% dihydroxybenzene additive achieves the best power conversion efficiency(PCE) of 4.58% with Jsc of 12.5 mA/cm2,Voc of 0.65 V,and FF of 66.6% under simulated solar illumination of AM 1.5G(100 mW/cm2),compared with the control device with PCE of 3.39%(35% improvement compared with the control device).The XRD measurement reveals that the addition of additives induces the crystallization of P3HT and establishes good inter-network to increase the contact area of donor and acceptor,and then helps charge to be effectively transferred to the electrode to reduce the chance of recombination.All evidences indicate that the dihydroxybenzene is likely to be a promising new type additive that can enhance the performance of organic bulk heterojunction solar cells.
基金supported by the National Natural Science Foundation of China (No. 50872091)Tianjin Key Subject for Materials Physics and Chemistry (No. 2006ZD30,06YFJMJC02300)
文摘The influence of the polarized state of blue light on light scattering in InGaN blue chip nano-crystal luminescent glass for solid state lighting is investigated.Based on Rayleigh-Debye approximation theory,theoretical relationships between the light scattering turbidity and wavelength of the incident light,radius and refractive index of the nano-crystals are established to simulate the situations in yttrium aluminate garnet(YAG),silicate and oxynitride based luminescence glass.It is revealed that the scattering turbidity in luminescent glass turns to be the smallest as the effective refractive index of nanocrystals is equal to that of parent glass,and the scattering turbidity for the vertically polarized incident light is greater than that for the un-polarized incident light,while that for the horizontally polarized incident light is smaller than that for the unpolarized incident light under the same conditions.
基金supported by the National Natural Science Foundation of China (Nos.50503017,60876046 and 60976048)the Key Project of Education Ministry of China (No.209007)the Natural Science Foundation of Tianjin (No.07JCYBJC03200)
文摘The effect of a new interfacial buffer layer material,rhenium oxide(ReO3),on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene)(P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester(PCBM) blend is investigated.The effect of the thickness of the oxide layer on electrical characteristics of the device is also studied.Compared with traditional devices,by inserting a 10 nm-thick ReO3 as the anode buffer layer,a power conversion efficiency(PCE) of 2.8 %(a 37% improvement compared with the control devices) can be obtained with Jsc of 13.6 mA/cm2,Voc of 0.45 V,and a fill factor(FF) of 53.6% under the simulated AM1.5 G 100 mW/cm2 illumination in air.It is indicated that ReO3 can be used as an effective buffer layer to enhance the polymer bulk heterojunction(BHJ) photovoltaic cell efficiency.