Spherical indentation strain-gauge method is one of methods to m easure the surfaced residual stress with m easurem ent depth of 0. 1mm. The im pact of surface roughness on residual stress results was discussed. The r...Spherical indentation strain-gauge method is one of methods to m easure the surfaced residual stress with m easurem ent depth of 0. 1mm. The im pact of surface roughness on residual stress results was discussed. The results have shown th at, in tests ① and ② , Rx is droppedby 14 MPa approximately with the surface roughness being decreased from 0. 75 μm to 0. 55 μm . While in 44 MPa with the surface roughness being decreased from 0 . 75 μm to 0. 55 μm . Compared to tests ① and ② , the effect of the surface roughnesson residual stress results is more significant in tests ③ and ④ , and the reduction effect of surface roughness on residual stress measurement is enhanced. In engineering application, most components are already in different stress states. Therefore, the influence on residual stress m easurem ent can not be ignored. Residual stress of a 2219-T87 A1 alloy plate was m easured. With the confidence level of 0. 95 , the confidence interval is [-122.515,-113.8849] MPa.展开更多
Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were inv...Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were investigated.The results showed that the pore formation can be inhibited with oscillating frequency higher than 75 Hz and radius smaller than 0.5 mm.The columnar grains neighboring the fusion line can be broken by the beam oscillation behavior,while the grain growth was promoted with the increase of frequency or radius.It should be noted that the coincidence site lattice(CSL)boundaries were mainlyΣ13b andΣ29 boundaries,which were contributed by{10■2}tensile twins and{11■2}compression twins,respectively.The total fraction of CSL boundaries reached maximum at radius of 0.25 mm and frequency of 75 Hz,which was also confirmed as the optimized parameters.In this case,the elongation rate increased up to 13.2%,12.8%higher than that of the weld without beam oscillation.Finally,the pore formation and inhibition mechanisms were illustrated according to the state of melt flow and keyhole formation,the abnormal growth was discussed basing on secondary recrystallization,and the relationship among the pore formation,grain size,boundary characteristics and weld toughness were finally established.展开更多
Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that lase...Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics.展开更多
To address the problem of floating and aggregation of Ag-GNSs in the molten pool during the traditional reflow soldering process,Cu/SAC/Ag-GNSs/Cu sandwich joints were prepared under an applied current density(1.0...To address the problem of floating and aggregation of Ag-GNSs in the molten pool during the traditional reflow soldering process,Cu/SAC/Ag-GNSs/Cu sandwich joints were prepared under an applied current density(1.0×10^(4) A/cm^(2))for a few hundred milliseconds to produce Ag-coated graphene-reinforced Sn-Ag-Cu(SAC/AgGNSs)solder joints.The experimental results showed that Ag-GNSs were homogenously dispersed in the solder joints,providing more Cu6 Sn5 grain nucleation sites,which refined these grains and reduced the thickness difference at the anode and cathode.In addition,the Cu6 Sn5 morphology changed from rod-like to plate-shaped because of the uniform distribution of Ag-GNSs and constitutional supercooling.The significantly increased shear strength of the transient current bonding and the change in the fracture mechanism were due to the uniformly distributed Ag-GNSs and the microstructural changes.展开更多
In this study, WC-Co powder with WC submicron grain size of 0. 7 - 0. 9μm was used as feedstock powder to deposit wear resistant coating by home-made T J-9000 HVOF system. The deposition efficiency of the feedstock p...In this study, WC-Co powder with WC submicron grain size of 0. 7 - 0. 9μm was used as feedstock powder to deposit wear resistant coating by home-made T J-9000 HVOF system. The deposition efficiency of the feedstock powder was examined. Influences of the High Velocity Oxy-Fuel (HVOF) spraying parameters on the microstructures, phase compositions, microhardness, and wear resistance of sprayed coatings were investigated. The deposition efficiency of the feedstock powder was very high, and reached to 58%. The sprayed coatings were very dense, and their porosities were lower than 1% and could be lowered than 0. 42% with optimal spraying parameters. According to the X-ray Diffraction ( XRD ) analysis, the phase compositions of the sprayed coatings consisted of WC, Co, W2 C, and Co6 W6 C. W appeared at high flame power. The average microhardness of the coating was 1 100 HVo 1 and had reversely linear relationship with the porosity of coatings. The weight loss of the counter wear ring GCrl5 was 20 times than that of the sprayed WC-Co coating. At the load of 15 kg and rotational speed of 200 r/min of GCr15 counter wear ring, the friction coefficient was 0. 68 in the dry wear conditions. It was concluded that the sprayed submicron structural WC-12Co coating had good wear resistance.展开更多
Nondestructive techniques for appraising gas metal arc welding(GMAW) faults plays a very important role in on-line quality controllability and prediction of the GMAW process. On-line welding quality controllability ...Nondestructive techniques for appraising gas metal arc welding(GMAW) faults plays a very important role in on-line quality controllability and prediction of the GMAW process. On-line welding quality controllability and prediction have several disadvantages such as high cost, low efficiency, complication and greatly being affected by the environment. An enhanced, efficient evaluation technique for evaluating welding faults based on Mahalanobis distance(MD) and normal distribution is presented. In addition, a new piece of equipment, designated the weld quality tester(WQT), is developed based on the proposed evaluation technique. MD is superior to other multidimensional distances such as Euclidean distance because the covariance matrix used for calculating MD takes into account correlations in the data and scaling. The values of MD obtained from welding current and arc voltage are assumed to follow a normal distribution. The normal distribution has two parameters: the meanm and standard deviations of the data. In the proposed evaluation technique used by the WQT, values of MD located in the range from zero tom+3s are regarded as “good”. Two experiments which involve changing the flow of shielding gas and smearing paint on the surface of the substrate are conducted in order to verify the sensitivity of the proposed evaluation technique and the feasibility of using WQT. The experimental results demonstrate the usefulness of the WQT for evaluating welding quality. The proposed technique can be applied to implement the on-line welding quality controllability and prediction, which is of great importance to design some novel equipment for weld quality detection.展开更多
Based on the SYSWELD software, a 3D finite element simulation is performed to investigate the temperature field and residual stress in the repair weld process of P92 steel plates. The results show that large tensile r...Based on the SYSWELD software, a 3D finite element simulation is performed to investigate the temperature field and residual stress in the repair weld process of P92 steel plates. The results show that large tensile residual stresses are generated in the repair weld and the heat-affected zone(HAZ), which gradually decrease with distance in the surrounding base metal. With an increase of the repair length,the transverse residual stress decreases in the middle of plate surface, the HAZ and the weld metal. The longitudinal stress shows a declining trend in the weld metal with an increase of the repair length, while in the middle of plate surface and the HAZ, the longitudinal stress is only minimally affected by the repair length.展开更多
The characteristics of microstructure, mechanical property and corrosion behavior of Cr26Mo3.5 super stainless steel joints by pulse tungsten inert gas(P-TIG)welding and laser welding were investigated. The results in...The characteristics of microstructure, mechanical property and corrosion behavior of Cr26Mo3.5 super stainless steel joints by pulse tungsten inert gas(P-TIG)welding and laser welding were investigated. The results indicate that the widths of the center equiaxed grain zone(EGZ)and the columnar grain zone(CGZ)increase with the increase of heat input in both welding processes. The precipitates of Nb and Ti carbides and nitrides are formed in the weld metal(WM)and the heat affected zone(HAZ). The joints by laser welding show better tensile and corrosion resistance properties than those by P-TIG welding due to the heat concentration and lower heat input. The tensile strength and elongation increase with the decrease of heat input, and the fracture mode of the joints turns into ductile-brittle mixed fracture from ductile fracture when the welding method turns into P-TIG welding from laser welding. Moreover, the corrosion resistance of all joints declines slightly with the increase of heat input. Hence, laser welding is more suitable for welding Cr26Mo3.5 super stainless steel in engineering applications.展开更多
The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investigatedin this study. Some conventional oxides, halides and carbonates were applied in laser welding. The results...The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investigatedin this study. Some conventional oxides, halides and carbonates were applied in laser welding. The resultsshowed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved thepenetration more effectively at low power than that at high power. The uniform design was adopted to arrange theformula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to2.23 times as large as that without flux, including 50% ZrO2, 12.09% CaCO3, 10.43% CaO and 27.48% MgO. Throughthe high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the penetrationcapability.展开更多
The cyclic deformation behavior and microstructure evolution of the 55Ni−23Cr−13Co nickel-based superalloy were studied at 750℃ under the strain amplitudes from 0.35%to 0.6%.Coffin−Manson−Basquin and Smith−Watson−Top...The cyclic deformation behavior and microstructure evolution of the 55Ni−23Cr−13Co nickel-based superalloy were studied at 750℃ under the strain amplitudes from 0.35%to 0.6%.Coffin−Manson−Basquin and Smith−Watson−Topper relationships were employed,which satisfactorily predicted the fatigue life of the alloy under various strain amplitudes.The superalloy showed an initial cyclic hardening as a result of the interaction between the dislocations and the precipitates,and following cyclic softening behavior mainly due to the shearing of theγ′phase by dislocations and dislocations recovery under all strain amplitudes.Microstructure analyses showed that the M_(23)C_(6) carbides exhibited a continuous-chain distribution at lower strain amplitudes,while they showed a discontinuous distribution at higher strain amplitudes.As the strain amplitude increased,the size of theγ′phase decreased as the consequence of repeated shearing by dislocations.Fracture mechanisms were analyzed.Under higher strain amplitudes,cavities preferred to form around grain boundaries.展开更多
The microstructure,texture,and yield strength of an advanced heat-resistant alloy weldment made with composition-matched weld filler were investigated.Scanning electron microscopy,energy dispersive spectroscopy,and el...The microstructure,texture,and yield strength of an advanced heat-resistant alloy weldment made with composition-matched weld filler were investigated.Scanning electron microscopy,energy dispersive spectroscopy,and electron backscatter diffraction were used to characterize the microstructural and textural changes.Various grain boundary engineering(GBE)processes were performed on the weldment.The yield strengths of the weldment at 973 K were obtained before and after GBE processing,and were mostly consistent with the theoretically predicted values.The coincident-site lattices,misorientation,and recrystallization of the weld metal after GBE were analyzed,and the results indicate that the increase in dislocation density and the improvement in special grain boundaries in the weld metal are the main reasons for the yield strength elevation of the weldment after GBE.The variation in elongation after high-temperature tests has the same tendency as that in the impact toughness with different GBE parameters,which is related to the coarsening behavior of carbides.展开更多
The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative stu...The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.展开更多
Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median...Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median filtering, binary processing and image edge extraction are used to pretreat the seam image. In the post-processing of seam image, the feature points of the target image are succesfully detected by using center line extraction and feature points detection algorithm based on slope analysis. The whole processing time is less than 150 ms, and the real-time processing of seam image can be implemented.展开更多
In this study, multi-information including spectrum, high-speed photograph and electrical signal was adopted to explore the coupling mechanism of alternate burning in laser-twin-arc welding process. Laser provides a c...In this study, multi-information including spectrum, high-speed photograph and electrical signal was adopted to explore the coupling mechanism of alternate burning in laser-twin-arc welding process. Laser provides a conductive, stable plasma channel for arcs. Plasma radiation strengthened especially in the center of the arc after hybrid. High temperature plasma erupting from keyhole provides an upward reacting force which can prevent droplet from transfer. The charged particles consisted in high temperature plasma reduce the voltage that maintains arc ignition or burning. The results show that laser can influence the arc shape, prevent droplet transfer, reduce resistivity and stabilize arcs.展开更多
Using highspeed camera image measuring and processing,the contour of the weld pool was extracted accurately in pulsed metal inert gas(P-MIG)welding.Based on this extraction method,time and frequency domain characteris...Using highspeed camera image measuring and processing,the contour of the weld pool was extracted accurately in pulsed metal inert gas(P-MIG)welding.Based on this extraction method,time and frequency domain characteristics at different points along the contour of the weld pool were analyzed for one pulse one droplet and one pulse two droplets,respectively.The results show that,because of the wave super position that was created by the pulsed arc and droplet impacting the weld pool,the oscillation amplitude along the weld pool fluctuated and decreased with an increase in distance from the point to the arc center.The oscillation near the arc center was complex and intense for one pulse two droplets,and the amplitude were relatively small because the oscillation caused by the pulsed arc could be offset by the molten droplet impact.The weld pool oscillation that was caused by the pulsed arc was stronger than that caused by the droplet.展开更多
A process evaluation system for pulsed gas metal arc welding (GMAW-P) based on the Lab V1EW platform has been developed. This system is comprised of two modules, a simultaneous display module and a data analysis mod...A process evaluation system for pulsed gas metal arc welding (GMAW-P) based on the Lab V1EW platform has been developed. This system is comprised of two modules, a simultaneous display module and a data analysis module. Using these modules, the system can not only provide a comprehensive direct viewing display of the welding electric signal and high speed camera photo, but also can analyze the characteristic parameters of the welding process. The results show that the system works properly.展开更多
Aluminum alloy shows low absorption to laser for its essential high reflection property. In this paper, an active laser welding process is adopted to weld 6061 aluminum alloy with the halide suocactant coated on sheet...Aluminum alloy shows low absorption to laser for its essential high reflection property. In this paper, an active laser welding process is adopted to weld 6061 aluminum alloy with the halide suocactant coated on sheet surface to improve the welding quality. The sheets with surfactant are welded under a series of welding parameters of laser power and welding speed while the plasma plumes in the welding process are recorded by high-speed camera. Then a metaUographic analysis and a transverse tensile test are implemented to assess the sheet butt joint property. The experiments show that the weld depth is deepened and the plasma plume is smaller with surfactant. A well formed weld of 1 mm-thickness sheet of 6061 aluminum alloy can be obtained under laser power of 920 W, welding speed of 7 mm/s, zero defocusing-amount and an argon shielding gas flow of 30 L/min.展开更多
This paper puts forward a new method to achieve flux cored wire TIG welding and uses high-speed photography to analyze the droplet transfer behavior and forces acting on the droplet. The droplet transfer forms include...This paper puts forward a new method to achieve flux cored wire TIG welding and uses high-speed photography to analyze the droplet transfer behavior and forces acting on the droplet. The droplet transfer forms include bridging transfer, slag column guided transfer, and non-contact transfer; each of these forms may be observed as the melting position of the welding wire changes. The important role of surface tension in the process of droplet transfer is proposed using static force balance theory and pinch instability theory. The phenomenon of droplet backward swing during welding process could be attributed to the vapor recoil force produced by vapors from the droplet. The welding experiments show that the proposed welding process is stable and that the weld quality produced is good.展开更多
An analysis with Fourier series on electric signals of meso-spray process of pulse MIG welding of aluminum shows many harmonic waves of different frequency in the signals, including the inherent high, low frequency el...An analysis with Fourier series on electric signals of meso-spray process of pulse MIG welding of aluminum shows many harmonic waves of different frequency in the signals, including the inherent high, low frequency elementary waves of short circuit and the harmonic waves from pulse current besides the noise signals of high frequency. The wavelet filtering with adjustable threshold is applied to study and handle the electric signals from meso-spray process of pulse MIG welding of aluminum, displaying a good solution on suppressing the noise in the signals.展开更多
文摘Spherical indentation strain-gauge method is one of methods to m easure the surfaced residual stress with m easurem ent depth of 0. 1mm. The im pact of surface roughness on residual stress results was discussed. The results have shown th at, in tests ① and ② , Rx is droppedby 14 MPa approximately with the surface roughness being decreased from 0. 75 μm to 0. 55 μm . While in 44 MPa with the surface roughness being decreased from 0 . 75 μm to 0. 55 μm . Compared to tests ① and ② , the effect of the surface roughnesson residual stress results is more significant in tests ③ and ④ , and the reduction effect of surface roughness on residual stress measurement is enhanced. In engineering application, most components are already in different stress states. Therefore, the influence on residual stress m easurem ent can not be ignored. Residual stress of a 2219-T87 A1 alloy plate was m easured. With the confidence level of 0. 95 , the confidence interval is [-122.515,-113.8849] MPa.
基金financially supported by the National Natural Science Foundation of China(grant nos.51905391,52025052 and 51975405).
文摘Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were investigated.The results showed that the pore formation can be inhibited with oscillating frequency higher than 75 Hz and radius smaller than 0.5 mm.The columnar grains neighboring the fusion line can be broken by the beam oscillation behavior,while the grain growth was promoted with the increase of frequency or radius.It should be noted that the coincidence site lattice(CSL)boundaries were mainlyΣ13b andΣ29 boundaries,which were contributed by{10■2}tensile twins and{11■2}compression twins,respectively.The total fraction of CSL boundaries reached maximum at radius of 0.25 mm and frequency of 75 Hz,which was also confirmed as the optimized parameters.In this case,the elongation rate increased up to 13.2%,12.8%higher than that of the weld without beam oscillation.Finally,the pore formation and inhibition mechanisms were illustrated according to the state of melt flow and keyhole formation,the abnormal growth was discussed basing on secondary recrystallization,and the relationship among the pore formation,grain size,boundary characteristics and weld toughness were finally established.
基金financially supported by the National Natural Science Foundation of China(grant nos.51905391,52025052 and 51975405)。
文摘Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics.
基金financial support from the National Natural Science Foundation of China(No.51974198)。
文摘To address the problem of floating and aggregation of Ag-GNSs in the molten pool during the traditional reflow soldering process,Cu/SAC/Ag-GNSs/Cu sandwich joints were prepared under an applied current density(1.0×10^(4) A/cm^(2))for a few hundred milliseconds to produce Ag-coated graphene-reinforced Sn-Ag-Cu(SAC/AgGNSs)solder joints.The experimental results showed that Ag-GNSs were homogenously dispersed in the solder joints,providing more Cu6 Sn5 grain nucleation sites,which refined these grains and reduced the thickness difference at the anode and cathode.In addition,the Cu6 Sn5 morphology changed from rod-like to plate-shaped because of the uniform distribution of Ag-GNSs and constitutional supercooling.The significantly increased shear strength of the transient current bonding and the change in the fracture mechanism were due to the uniformly distributed Ag-GNSs and the microstructural changes.
文摘In this study, WC-Co powder with WC submicron grain size of 0. 7 - 0. 9μm was used as feedstock powder to deposit wear resistant coating by home-made T J-9000 HVOF system. The deposition efficiency of the feedstock powder was examined. Influences of the High Velocity Oxy-Fuel (HVOF) spraying parameters on the microstructures, phase compositions, microhardness, and wear resistance of sprayed coatings were investigated. The deposition efficiency of the feedstock powder was very high, and reached to 58%. The sprayed coatings were very dense, and their porosities were lower than 1% and could be lowered than 0. 42% with optimal spraying parameters. According to the X-ray Diffraction ( XRD ) analysis, the phase compositions of the sprayed coatings consisted of WC, Co, W2 C, and Co6 W6 C. W appeared at high flame power. The average microhardness of the coating was 1 100 HVo 1 and had reversely linear relationship with the porosity of coatings. The weight loss of the counter wear ring GCrl5 was 20 times than that of the sprayed WC-Co coating. At the load of 15 kg and rotational speed of 200 r/min of GCr15 counter wear ring, the friction coefficient was 0. 68 in the dry wear conditions. It was concluded that the sprayed submicron structural WC-12Co coating had good wear resistance.
基金Supported by Ningbo Municipal Natural Science Foundation of China (Grant No.2014A610063)
文摘Nondestructive techniques for appraising gas metal arc welding(GMAW) faults plays a very important role in on-line quality controllability and prediction of the GMAW process. On-line welding quality controllability and prediction have several disadvantages such as high cost, low efficiency, complication and greatly being affected by the environment. An enhanced, efficient evaluation technique for evaluating welding faults based on Mahalanobis distance(MD) and normal distribution is presented. In addition, a new piece of equipment, designated the weld quality tester(WQT), is developed based on the proposed evaluation technique. MD is superior to other multidimensional distances such as Euclidean distance because the covariance matrix used for calculating MD takes into account correlations in the data and scaling. The values of MD obtained from welding current and arc voltage are assumed to follow a normal distribution. The normal distribution has two parameters: the meanm and standard deviations of the data. In the proposed evaluation technique used by the WQT, values of MD located in the range from zero tom+3s are regarded as “good”. Two experiments which involve changing the flow of shielding gas and smearing paint on the surface of the substrate are conducted in order to verify the sensitivity of the proposed evaluation technique and the feasibility of using WQT. The experimental results demonstrate the usefulness of the WQT for evaluating welding quality. The proposed technique can be applied to implement the on-line welding quality controllability and prediction, which is of great importance to design some novel equipment for weld quality detection.
基金supported by the National Key R&D Program of China(Grant No.2017YFB1303300)。
文摘Based on the SYSWELD software, a 3D finite element simulation is performed to investigate the temperature field and residual stress in the repair weld process of P92 steel plates. The results show that large tensile residual stresses are generated in the repair weld and the heat-affected zone(HAZ), which gradually decrease with distance in the surrounding base metal. With an increase of the repair length,the transverse residual stress decreases in the middle of plate surface, the HAZ and the weld metal. The longitudinal stress shows a declining trend in the weld metal with an increase of the repair length, while in the middle of plate surface and the HAZ, the longitudinal stress is only minimally affected by the repair length.
基金Supported by the Research Institute,Baoshan Iron&Steel Co.,Ltd
文摘The characteristics of microstructure, mechanical property and corrosion behavior of Cr26Mo3.5 super stainless steel joints by pulse tungsten inert gas(P-TIG)welding and laser welding were investigated. The results indicate that the widths of the center equiaxed grain zone(EGZ)and the columnar grain zone(CGZ)increase with the increase of heat input in both welding processes. The precipitates of Nb and Ti carbides and nitrides are formed in the weld metal(WM)and the heat affected zone(HAZ). The joints by laser welding show better tensile and corrosion resistance properties than those by P-TIG welding due to the heat concentration and lower heat input. The tensile strength and elongation increase with the decrease of heat input, and the fracture mode of the joints turns into ductile-brittle mixed fracture from ductile fracture when the welding method turns into P-TIG welding from laser welding. Moreover, the corrosion resistance of all joints declines slightly with the increase of heat input. Hence, laser welding is more suitable for welding Cr26Mo3.5 super stainless steel in engineering applications.
基金Supported by the Research Institute,Baoshan Iron & Steel Co.,Ltd
文摘The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investigatedin this study. Some conventional oxides, halides and carbonates were applied in laser welding. The resultsshowed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved thepenetration more effectively at low power than that at high power. The uniform design was adopted to arrange theformula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to2.23 times as large as that without flux, including 50% ZrO2, 12.09% CaCO3, 10.43% CaO and 27.48% MgO. Throughthe high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the penetrationcapability.
基金financial supports from the National Natural Science Foundation of China (Nos. 52025052, 51975405)。
文摘The cyclic deformation behavior and microstructure evolution of the 55Ni−23Cr−13Co nickel-based superalloy were studied at 750℃ under the strain amplitudes from 0.35%to 0.6%.Coffin−Manson−Basquin and Smith−Watson−Topper relationships were employed,which satisfactorily predicted the fatigue life of the alloy under various strain amplitudes.The superalloy showed an initial cyclic hardening as a result of the interaction between the dislocations and the precipitates,and following cyclic softening behavior mainly due to the shearing of theγ′phase by dislocations and dislocations recovery under all strain amplitudes.Microstructure analyses showed that the M_(23)C_(6) carbides exhibited a continuous-chain distribution at lower strain amplitudes,while they showed a discontinuous distribution at higher strain amplitudes.As the strain amplitude increased,the size of theγ′phase decreased as the consequence of repeated shearing by dislocations.Fracture mechanisms were analyzed.Under higher strain amplitudes,cavities preferred to form around grain boundaries.
基金Project(51475326)supported by the National Natural Science Foundation of ChinaProject(BHSF2017-22)supported by the Demonstration Program of National Marine Economic Innovation of Tianjin City,China。
文摘The microstructure,texture,and yield strength of an advanced heat-resistant alloy weldment made with composition-matched weld filler were investigated.Scanning electron microscopy,energy dispersive spectroscopy,and electron backscatter diffraction were used to characterize the microstructural and textural changes.Various grain boundary engineering(GBE)processes were performed on the weldment.The yield strengths of the weldment at 973 K were obtained before and after GBE processing,and were mostly consistent with the theoretically predicted values.The coincident-site lattices,misorientation,and recrystallization of the weld metal after GBE were analyzed,and the results indicate that the increase in dislocation density and the improvement in special grain boundaries in the weld metal are the main reasons for the yield strength elevation of the weldment after GBE.The variation in elongation after high-temperature tests has the same tendency as that in the impact toughness with different GBE parameters,which is related to the coarsening behavior of carbides.
文摘The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.
基金The work was supported by National Natural Science Foundation of China (No. 50975195).
文摘Seam image processing is the basis of the realization of automatic laser vision seam tracking system, and it has become one of the important research directions. Adding windows processing, gray processing, fast median filtering, binary processing and image edge extraction are used to pretreat the seam image. In the post-processing of seam image, the feature points of the target image are succesfully detected by using center line extraction and feature points detection algorithm based on slope analysis. The whole processing time is less than 150 ms, and the real-time processing of seam image can be implemented.
文摘In this study, multi-information including spectrum, high-speed photograph and electrical signal was adopted to explore the coupling mechanism of alternate burning in laser-twin-arc welding process. Laser provides a conductive, stable plasma channel for arcs. Plasma radiation strengthened especially in the center of the arc after hybrid. High temperature plasma erupting from keyhole provides an upward reacting force which can prevent droplet from transfer. The charged particles consisted in high temperature plasma reduce the voltage that maintains arc ignition or burning. The results show that laser can influence the arc shape, prevent droplet transfer, reduce resistivity and stabilize arcs.
基金This work was supported by the National Natural Science Foundation of China(Grant Numbers 51205283).
文摘Using highspeed camera image measuring and processing,the contour of the weld pool was extracted accurately in pulsed metal inert gas(P-MIG)welding.Based on this extraction method,time and frequency domain characteristics at different points along the contour of the weld pool were analyzed for one pulse one droplet and one pulse two droplets,respectively.The results show that,because of the wave super position that was created by the pulsed arc and droplet impacting the weld pool,the oscillation amplitude along the weld pool fluctuated and decreased with an increase in distance from the point to the arc center.The oscillation near the arc center was complex and intense for one pulse two droplets,and the amplitude were relatively small because the oscillation caused by the pulsed arc could be offset by the molten droplet impact.The weld pool oscillation that was caused by the pulsed arc was stronger than that caused by the droplet.
文摘A process evaluation system for pulsed gas metal arc welding (GMAW-P) based on the Lab V1EW platform has been developed. This system is comprised of two modules, a simultaneous display module and a data analysis module. Using these modules, the system can not only provide a comprehensive direct viewing display of the welding electric signal and high speed camera photo, but also can analyze the characteristic parameters of the welding process. The results show that the system works properly.
基金This project is supported by Natural Science Foundation of Tianjin (llJCYBJC06100) and Science & Technology Pillar Program of Tianjin (10ZCKFSF00200).
文摘Aluminum alloy shows low absorption to laser for its essential high reflection property. In this paper, an active laser welding process is adopted to weld 6061 aluminum alloy with the halide suocactant coated on sheet surface to improve the welding quality. The sheets with surfactant are welded under a series of welding parameters of laser power and welding speed while the plasma plumes in the welding process are recorded by high-speed camera. Then a metaUographic analysis and a transverse tensile test are implemented to assess the sheet butt joint property. The experiments show that the weld depth is deepened and the plasma plume is smaller with surfactant. A well formed weld of 1 mm-thickness sheet of 6061 aluminum alloy can be obtained under laser power of 920 W, welding speed of 7 mm/s, zero defocusing-amount and an argon shielding gas flow of 30 L/min.
基金supported by the National Natural Science Foundation of China(No.51175374)the Natural Science Foundation of Tianjin(No.16JCZDJC38700)
文摘This paper puts forward a new method to achieve flux cored wire TIG welding and uses high-speed photography to analyze the droplet transfer behavior and forces acting on the droplet. The droplet transfer forms include bridging transfer, slag column guided transfer, and non-contact transfer; each of these forms may be observed as the melting position of the welding wire changes. The important role of surface tension in the process of droplet transfer is proposed using static force balance theory and pinch instability theory. The phenomenon of droplet backward swing during welding process could be attributed to the vapor recoil force produced by vapors from the droplet. The welding experiments show that the proposed welding process is stable and that the weld quality produced is good.
基金This project is supported by National Natural Science Foundation of China(59975068) and Science & Technology Pillar Program of Tianjin(10ZCKFSF00200).
文摘An analysis with Fourier series on electric signals of meso-spray process of pulse MIG welding of aluminum shows many harmonic waves of different frequency in the signals, including the inherent high, low frequency elementary waves of short circuit and the harmonic waves from pulse current besides the noise signals of high frequency. The wavelet filtering with adjustable threshold is applied to study and handle the electric signals from meso-spray process of pulse MIG welding of aluminum, displaying a good solution on suppressing the noise in the signals.