期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Recent progress on the recycling technology of Li-ion batteries 被引量:16
1
作者 Yuqing Wang Ning An +5 位作者 Lei Wen Lei Wang Xiaotong Jiang Feng Hou Yuxin Yin Ji Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期391-419,共29页
Lithium-ion batteries(LIBs)have been widely applied in portable electronic devices and electric vehicles.With the booming of the respective markets,a huge quantity of spent LIBs that typically use either LiFePO_(4) or... Lithium-ion batteries(LIBs)have been widely applied in portable electronic devices and electric vehicles.With the booming of the respective markets,a huge quantity of spent LIBs that typically use either LiFePO_(4) or Li N_(x)Co_(y)Mn_(z)O_(2) cathode materials will be produced in the very near future,imposing significant pressure for the development of suitable disposal/recycling technologies,in terms of both environmental protection and resource reclaiming.In this review,we firstly do a comprehensive summary of the-state-of-art technologies to recycle Li N_(x)Co_(y)Mn_(z)O_(2) and LiFePO_(4)-based LIBs,in the aspects of pretreatment,hydrometallurgical recycling,and direct regeneration of the cathode materials.This closed-loop strategy for cycling cathode materials has been regarded as an ideal approach considering its economic benefit and environmental friendliness.Afterward,as for the exhausted anode materials,we focus on the utilization of exhausted anode materials to obtain other functional materials,such as graphene.Finally,the existing challenges in recycling the LiFePO_(4) and Li N_(x)Co_(y)Mn_(z)O_(2) cathodes and graphite anodes for industrial-scale application are discussed in detail;and the possible strategies for these issues are proposed.We expect this review can provide a roadmap towards better technologies for recycling LIBs,shed light on the future development of novel battery recycling technologies to promote the environmental benignity and economic viability of the battery industry and pave way for the large-scale application of LIBs in industrial fields in the near future. 展开更多
关键词 Li ion battery RECYCLING CATHODE ANODE
下载PDF
Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System 被引量:2
2
作者 Wei Kang Yiqiang Zhao +3 位作者 Xueheng Jia Lin Hao Leping Dang Hongyuan Wei 《Transactions of Tianjin University》 EI CAS 2021年第1期55-63,共9页
A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silic... A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature. 展开更多
关键词 Lithium-ion battery Phase-change material PARAFFIN Silicon carbide Thermal runaway
下载PDF
Construction of Phosphorus-Functionalized Multichannel Carbon Interlayers for Dendrite-Free Metallic Zn Anodes
3
作者 Liang He Qingyin Zhang +6 位作者 He Li Shiping Liu Ting Cheng Ruoxuan Zhang Yujia Wang Peng Zhang Zhiqiang Shi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期95-103,共9页
Zn metal anodes are usually subject to grave dendrite growth during platting/stripping,which dramatically curtails the lifespan of aqueous Zn-ion batteries and capacitors.To address above problems,in our work,a novel ... Zn metal anodes are usually subject to grave dendrite growth during platting/stripping,which dramatically curtails the lifespan of aqueous Zn-ion batteries and capacitors.To address above problems,in our work,a novel phosphorus-functionalized multichannel carbon interlayer was designed and covered on Zn anodes.The results demonstrated that the multichannel structure combined with the three-dimensional meshy skeleton can provide more sufficient space for Zn deposition,thereby effectively inhibiting the growth of zinc dendrites.Meanwhile,theoretical calculations also confirmed that the P-C and P=O functional groups from phosphorus-functionalized multichannel carbon interlayer have the decisive influence in reducing the zinc nucleation potential and depositing uniformly zinc.Concretely,the symmetrical battery assembled with phosphorus-functionalized multichannel carbon interlayer-covered Zn anodes possessed a long lifetime of 3300 h at 2 mA cm^(-2)with 1 mAh cm^(-2).Furthermore,the full cell with activated carbon cathodes exhibited a high specific capacity of 80.5 mAh g^(-1)and outstanding cycling stability without capacity decay after 15000 cycles at a high current density of 5 A g^(-1).The superior electrochemical performance exceeded that of most reported papers.Consequently,our synthesized zincophilic interlayer with the unique structure has superior prospects for application in stabilizing zinc anodes and prolonging the lifespan of batteries. 展开更多
关键词 aqueous Zn-ion supercapacitors multichannel carbon fiber phosphorus functionalized Zn dendrite Zn metal anode
下载PDF
Reversible and irreversible heat generation of NCA/Si–C pouch cell during electrochemical energy-storage process 被引量:8
4
作者 Ying Bai Limin Li +8 位作者 Yu Li Guanghai Chen Huichun Zhao Zhaohua Wang Chuan Wu Hongyun Ma Xinquan Wang Hongyue Cui Jiang Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期95-102,共8页
To meet the requirements of electronic vehicles(EVs) and hybrid electric vehicles(HEVs),the high energy density Li Ni_(0.8) Co_(0.15) Al_(0.05) O_2(NCA) cathode and Si–C anode have attracted more attention.Here we re... To meet the requirements of electronic vehicles(EVs) and hybrid electric vehicles(HEVs),the high energy density Li Ni_(0.8) Co_(0.15) Al_(0.05) O_2(NCA) cathode and Si–C anode have attracted more attention.Here we report the thermal behaviors of NCA/Si–C pouch cell during the charge/discharge processes at different current densities.The total heat generations are derived from the surface temperature change during electrochemical Li+insertion/extraction in adiabatic surrounding.The reversible heat is determined by the entropic coefficients,which are related with open-circuit voltage at different temperatures; while the irreversible heat is determined by the internal resistance,which can be obtained via V–I characteristic,electrochemical impedance spectroscopy and hybrid pulse power characterization(HPPC).During the electrochemical process,the reversible heat contributes less than 10% to total heat generation; and the heat generated in charge process is less than that in discharge process.The results of thermal behaviors analyses are conducive to understanding the safety management and paving the way for building a reliable thermal model of high energy density lithium ion battery. 展开更多
关键词 HEAT generation Internal resistance REVERSIBLE HEAT IRREVERSIBLE HEAT POUCH CELL
下载PDF
Influence of carbon sources on the performance of carbon-coated nano-silicon
5
作者 王琳 李娜 +1 位作者 陈浩森 宋维力 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期689-694,共6页
Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However... Silicon-based material is an important anode material for next-generation lithium-ion batteries.In order to overcome its shortcomings,carbon coating is often employed to improve the electrochemical performance.However,the carbon source,carbon content,and different contact and mixing schemes between carbon sources and silicon are all complex factors and need to be clarified.In this study,nano-silicon is coated by the chemical vapor deposition method using different carbon sources,such as acetylene,methane,propane,and propylene.Carbon content after coating is designed to stay at the same level to reduce the experimental error.Results show the sample with higher conductivity provides higher cycle performance.Propylene is the best choice of the four carbon sources studied in this work.These results indicate that the selection of the carbon source is an important factor that plays a significant role in electrochemical performance. 展开更多
关键词 SILICON carbon coated different carbon sources lithium-ion battery
下载PDF
Aplication of Corncob-Based Activated Carbon as Electrode Material for Electric Double-Layer Capacitors
6
作者 王玉新 刘炳泗 +1 位作者 时志强 刘凤丹 《Transactions of Tianjin University》 EI CAS 2012年第3期217-223,共7页
To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure prope... To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure properties of which were determined based on N2 adsorption isotherm at 77 K. The results show that the expansion pretreatment for corncobs is beneficial to the preparation of ACs with high surface area. The specific surface area of the AC derived from corncob with expansion pretreatment (AC-1) is 32.5% larger than that without expansion pretreatment (AC-2). Furthermore, to probe the potential application of corncob-based ACs in electric double-layer capacitor (EDLC), the prepared ACs were used as electrode materials to assemble EDLC, and its electrochemical performance was investi- gated. The results indicate that the specific capacitance of AC-I is 276 F/g at 50 mA/g, which increases by 27% com- pared with that of AC-2 (217 F/g). As electrode materials, AC-1 presents a better electrochemical performance than AC-2, including a higher voltage maintenance ratio and a lower leakage current. 展开更多
关键词 corncob-based activated carbon electrode material electric double-layer capacitor
下载PDF
Optimized Method for Real-time Texture Reconstruction with RGB-D Camera
7
作者 Yonghong Hou Hang Li +1 位作者 Chuankun Liu Liang Zhang 《Transactions of Tianjin University》 EI CAS 2017年第5期493-500,共8页
With the appearance of RGB-D camera, the field of three-dimensional (3D) reconstruction receives more and more attention. In this paper, we present an optimization approach to produce high-quality textured 3D models b... With the appearance of RGB-D camera, the field of three-dimensional (3D) reconstruction receives more and more attention. In this paper, we present an optimization approach to produce high-quality textured 3D models based on the real-time 3D reconstruction system. The resulting models of real-time texture reconstruction often suffer from blurring, ghosting, and other artifacts. Our approach addresses this texture quality problem using blur detection and an optimized weight function. Experimental results demonstrate that our approach can improve the quality of textured 3D models by reducing the blur and ghosts on the model surface. © 2017, Tianjin University and Springer-Verlag GmbH Germany. 展开更多
关键词 Cameras Image reconstruction
下载PDF
Internal field study of 21700 battery based on long-life embedded wireless temperature sensor 被引量:8
8
作者 Le Yang Na Li +8 位作者 Likun Hu Shaoqi Wang Lin Wang Jiang Zhou Wei-Li Song Lei Sun Tai-Song Pan Hao-Sen Chen Daining Fang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第6期895-901,I0002,共8页
The safety of lithium-ion batteries is an essential concern where instant and accurate temperature sensing is critical.It is generally desired to put sensors inside batteries for instant sensing.However,the transmissi... The safety of lithium-ion batteries is an essential concern where instant and accurate temperature sensing is critical.It is generally desired to put sensors inside batteries for instant sensing.However,the transmission of internal measurement outside batteries without interfering their normal state is a non-trivial task due to the harsh electrochemical environment,the particular packaging structures and the intrinsic electromagnetic shielding problems of batteries.In this work,a novel in-situ temperature sensing framework is proposed by incorporating temperature sensors with a novel signal transmission solution.The signal transmission solution uses a self-designed integrated-circuit which modulates the internal measurements outside battery via its positive pole without package breaking.Extensive experimental results validate the noninterference properties of the proposed framework.Our proposed in-situ temperature measurement by the self-designed signal modulation solution has a promising potential for in-situ battery health monitoring and thus promoting the development of smart batteries. 展开更多
关键词 Internal field study Embedded sensor Wireless temperature transmission Lithium-ion battery
原文传递
Fluorinated graphite nanosheets for ultrahigh-capacity lithium primary batteries 被引量:5
9
作者 Xiao-Xia Yang Guan-Jun Zhang +5 位作者 Bao-Sheng Bai Yu Li Yi-Xiao Li Yong Yang Xian Jian Xi-Wen Wang 《Rare Metals》 CSCD 2021年第7期1708-1718,共11页
For better performances of Ni-based catalysts at low temperatures,Ni/SiC catalyst doped with a little amount of additive La was successfully prepared.The catalytic CO methanation activity tests showed that 3%La-Ni/SiC... For better performances of Ni-based catalysts at low temperatures,Ni/SiC catalyst doped with a little amount of additive La was successfully prepared.The catalytic CO methanation activity tests showed that 3%La-Ni/SiC catalyst was excellent at a low reaction temperature(95.9%CO conversion and 85.1%CH4 selectivity at250℃)with a superior stability compared with Ni/SiC(3.4%CO conversion and 0%CH4 selectivity at 250℃).This can be attributed to that the addition of La can markedly improve the dispersibility of active metal Ni and reduce the particle sizes of Ni nanoparticles or clusters,and can also regulate the interaction between active components and supports.Moreover,the high thermal conductivity and thermal stability could avoid the generation of hot spots in the catalyst bed.These results will promote the development of highly active Ni-based catalysts for the low-temperature methanation reaction. 展开更多
关键词 Graphite nanosheets Carbon fluoride Primary battery ELECTROLYTE Soft pack battery
原文传递
Enhancing the reversible capacity and cycle stability of lithium-ion batteries with Li-compensation material Li_(6)CoO_(4)
10
作者 Ziyu Na Chao Lai +4 位作者 Jiang Zhou Hongzhou Zhang Dawei Song Xixi Shi Lianqi Zhang 《Science China Materials》 SCIE EI CAS CSCD 2022年第3期620-628,共9页
High-capacity anode materials,such as SiO and Si/C,are considered promising candidates for high-energydensity lithium-ion batteries.However,the low initial Coulombic efficiency of these anode materials induced by side... High-capacity anode materials,such as SiO and Si/C,are considered promising candidates for high-energydensity lithium-ion batteries.However,the low initial Coulombic efficiency of these anode materials induced by side reactions(forming Li_(2)O and lithium silicate)and the formation of solid electrolyte interface film reduces the active Liions and causes low-discharge capacity.Adding a Li-compensation material in the cathode or anode is an effective strategy to overcome this problem.The most used Li-compensation material is the stabilized lithium metal powder.However,this strategy has high safety risks,high costs,and is challenging to quantify.Herein,the Li-compensation material of Li_(6)CoO_(4) is synthesized and investigated.The preparation conditions,stability in the air,delithiation mechanism,and structural transformation are analyzed and discussed.Electrochemical tests reveal that the discharge capacity and capacity retention of the full pouch cells(3-Ah)with Li_(6)CoO_(4) additive is significantly improved.Also,the reason for such improvement is investigated.This work provides an effective strategy of Li-compensating technology to enhance the electrochemical performance of lithium-ion batteries. 展开更多
关键词 lithium-ion batteries Li-compensation Li_(6)CoO_(4) Coulombic efficiency cycle performance
原文传递
Thickness evolution of commercial Li-ion pouch cells with siliconbased composite anodes and NCA cathodes 被引量:3
11
作者 ZHANG XingYu HE Jie +3 位作者 ZHOU Jiang CHEN HaoSen SONG WeiLi FANG DaiNing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第1期83-90,共8页
It is significant to monitor the thickness change of commercial Li-ion pouch cells that are assembled from Si-based electrodes and layered cathodes since the volume variation is critically linked with kinetic reaction... It is significant to monitor the thickness change of commercial Li-ion pouch cells that are assembled from Si-based electrodes and layered cathodes since the volume variation is critically linked with kinetic reaction mechanism and chemomechanical degradation. In this work, the single-point and full-field measurements are conducted on the thickness evolution of Si Ox/Cgraphite/lithium nickel-cobalt-aluminum oxide(Si Ox-G/NCA) batteries. It is found that an abnormal overshoot that has been rarely observed in the previous studies appears at the beginning of discharge, which is believed to be the combined results between the rapid expansion of NCA and the contraction of graphite related to the state of charge(SOC). Compared with the results of single-point measurement, the spatial displacement distribution obtained from three-dimensional(3D) scanning suggests the full-field thickness evolution of the entire cell scale, which is more feasible and efficient to provide full-field information for supporting pouch cell design and pack integration. 展开更多
关键词 thickness change 3D scanning silicon-based anode NCA cathode lithium-ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部