For the efficient conversion of L-tyrosine(L-Tyr)to tyrosol,which is an aromatic compound widely used in the pharmaceutical and chemical industries,a novel four-enzyme cascade pathway based on the Ehrlich pathway of S...For the efficient conversion of L-tyrosine(L-Tyr)to tyrosol,which is an aromatic compound widely used in the pharmaceutical and chemical industries,a novel four-enzyme cascade pathway based on the Ehrlich pathway of Saccharomyces cerevisiae was designed and reconstructed in Escherichia coli.Then,the expression levels of the relevant enzymes were coordinated using a modular approach and gene duplication after the identification of the pyruvate decarboxylase from Candida tropicalis(CtPDC)as the rate-limiting enzymatic step.In situ product removal(ISPR)strategy with XAD4 resins was explored to avoid product inhibition and further improve tyrosol yield.As a result,the titer and conversion rate of tyrosol obtained were 35.7 g·L^(-1) and 93.6%,respectively,in a 3-L bioreactor.Results presented here provide a potential enzymatic process for industrial production of tyrosol from cheap amino acids.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities (JUSRP21915)National Natural Science Foundation of China (22008089, 21878126)+2 种基金Provincial Natural Science Foundation of Jiangsu Province(BK20200622)the key technologies Research&Development Program of Jiangsu Province (BE2018623)the National First-Class Discipline Program of Light Industry Technology and Engineering(LITE2018-20)
文摘For the efficient conversion of L-tyrosine(L-Tyr)to tyrosol,which is an aromatic compound widely used in the pharmaceutical and chemical industries,a novel four-enzyme cascade pathway based on the Ehrlich pathway of Saccharomyces cerevisiae was designed and reconstructed in Escherichia coli.Then,the expression levels of the relevant enzymes were coordinated using a modular approach and gene duplication after the identification of the pyruvate decarboxylase from Candida tropicalis(CtPDC)as the rate-limiting enzymatic step.In situ product removal(ISPR)strategy with XAD4 resins was explored to avoid product inhibition and further improve tyrosol yield.As a result,the titer and conversion rate of tyrosol obtained were 35.7 g·L^(-1) and 93.6%,respectively,in a 3-L bioreactor.Results presented here provide a potential enzymatic process for industrial production of tyrosol from cheap amino acids.