The quantitative correlation between rheological properties and structural characteristic values of chilled abalone meat was studied. Structural changes were observed, and these values were enumerated using image proc...The quantitative correlation between rheological properties and structural characteristic values of chilled abalone meat was studied. Structural changes were observed, and these values were enumerated using image processing and analysis technique. Structural changes in the myofibrils and collagen fibrils were the greatest in chilling for 24 h. After chilling for 48h, similar structures of vertical and cross sections were observed. For chilling from 0h to 72h, the instantaneous modulus E0 of the both section meat decreases gradually with time, but no significant differences were observed after chilling for 48h. The relaxation time and viscosity of both sections attained the same values for the same chilling time, but increased gradually with increasing chilling time. Meanwhile, a negative correlation between the structural characteristic values (Dm, Am, Rvm), and rheological properties (E1, τ1 , η1) clearly exists. Some logarithmic expressions have been obtained for these negative correlations. These results suggest that the difference in rheological properties between the cross and vertical sections was mainly due to the structural changes of myofibrils and collagen fibrils, and rheological properties are influenced quantitatively by the structural characteristic values for chilling from 0h to 72h.展开更多
The retinal structure and visual acuity in Japanese flounder Paralichthys olivaceus at different stages of development were examined by light microscopy. The resolving power of the retina, the visual axis and the best...The retinal structure and visual acuity in Japanese flounder Paralichthys olivaceus at different stages of development were examined by light microscopy. The resolving power of the retina, the visual axis and the best visual field were estimated based on the distribution of cone cells in the retina. The visual system of the larvae appears poorly developed at hatching. The larvae with total length (TL) of less than 10 mm, have single cones only and the eyes were well pigmented. At 10-11 mm TL, most single cones fused to form double cones, with the single and double cones forming a mosaic pattern. From larvae to early juvenile the retina stretches, the cones increase in diameter and rods increase in number. Based on the highest density of the cones in the ventro temporal region, the visual axis was orientated up forward. The resolving power of the retina in 40-530 mm TL Japanese flounder was found to range from 25.1 to 11.5 min. The results indicated continual improvements in the visual system of the growing fish towards higher resolving power, visual acuity and sensitivity.展开更多
文摘The quantitative correlation between rheological properties and structural characteristic values of chilled abalone meat was studied. Structural changes were observed, and these values were enumerated using image processing and analysis technique. Structural changes in the myofibrils and collagen fibrils were the greatest in chilling for 24 h. After chilling for 48h, similar structures of vertical and cross sections were observed. For chilling from 0h to 72h, the instantaneous modulus E0 of the both section meat decreases gradually with time, but no significant differences were observed after chilling for 48h. The relaxation time and viscosity of both sections attained the same values for the same chilling time, but increased gradually with increasing chilling time. Meanwhile, a negative correlation between the structural characteristic values (Dm, Am, Rvm), and rheological properties (E1, τ1 , η1) clearly exists. Some logarithmic expressions have been obtained for these negative correlations. These results suggest that the difference in rheological properties between the cross and vertical sections was mainly due to the structural changes of myofibrils and collagen fibrils, and rheological properties are influenced quantitatively by the structural characteristic values for chilling from 0h to 72h.
基金Project 39970578 supported by the NSFCsupported by the Ministry of Education Foundation for University Key Teachers.
文摘The retinal structure and visual acuity in Japanese flounder Paralichthys olivaceus at different stages of development were examined by light microscopy. The resolving power of the retina, the visual axis and the best visual field were estimated based on the distribution of cone cells in the retina. The visual system of the larvae appears poorly developed at hatching. The larvae with total length (TL) of less than 10 mm, have single cones only and the eyes were well pigmented. At 10-11 mm TL, most single cones fused to form double cones, with the single and double cones forming a mosaic pattern. From larvae to early juvenile the retina stretches, the cones increase in diameter and rods increase in number. Based on the highest density of the cones in the ventro temporal region, the visual axis was orientated up forward. The resolving power of the retina in 40-530 mm TL Japanese flounder was found to range from 25.1 to 11.5 min. The results indicated continual improvements in the visual system of the growing fish towards higher resolving power, visual acuity and sensitivity.