A numerical analysis technique that incorporates Voronkov's model were examined and used to estimate the distribution of defects during crystal growth. By comparisons of the distribution of the density of LSTD and...A numerical analysis technique that incorporates Voronkov's model were examined and used to estimate the distribution of defects during crystal growth. By comparisons of the distribution of the density of LSTD and the position of R-OSF in non-nitrogen-doped (non-N-doped) and nitrogen-doped (N-doped) silicon crystals, it is found that the results of the numerical analyses agree with practically evaluated data. The observations suggest that the R-OSF nucleus is a VO2 complex that is formed by bonds between oxygen atoms and residual vacancies consumed during the formation of void defects. This suggests that Voronkov's model can be used to accurately predict the generation and growth of defects in silicon crystals. This numerical analysis technique was also found to be an effective method of estimating the distribution of defects in silicon crystals during crystal growth.展开更多
This paper proposes an agent-based distributed scheduling system against the background of the deregulation of electric utility and the smart grid for the renewable energy, and then focuses on a maintenance scheduling...This paper proposes an agent-based distributed scheduling system against the background of the deregulation of electric utility and the smart grid for the renewable energy, and then focuses on a maintenance scheduling in the context of real problems. A synchronous backtrack algorithm, a welD-known method for distributed scheduling problems, has difficulties handling (A) rapid schedule adjustments and (B) impartial assignment. Thus, this paper proposes two kinds of heuristics: (1) parallel assignment and (2) multiple priority strategies, and developed the distributed scheduling system which makes use of the heuristics. It consists of schedulers for each power station and mediation agents which have cloning and merging functions to support the implementation of the heuristics. Finally, the result of experiment shows an improvement when handling the rapid adjustment and the impartiality issues with reasonable computational overhead.展开更多
文摘A numerical analysis technique that incorporates Voronkov's model were examined and used to estimate the distribution of defects during crystal growth. By comparisons of the distribution of the density of LSTD and the position of R-OSF in non-nitrogen-doped (non-N-doped) and nitrogen-doped (N-doped) silicon crystals, it is found that the results of the numerical analyses agree with practically evaluated data. The observations suggest that the R-OSF nucleus is a VO2 complex that is formed by bonds between oxygen atoms and residual vacancies consumed during the formation of void defects. This suggests that Voronkov's model can be used to accurately predict the generation and growth of defects in silicon crystals. This numerical analysis technique was also found to be an effective method of estimating the distribution of defects in silicon crystals during crystal growth.
文摘This paper proposes an agent-based distributed scheduling system against the background of the deregulation of electric utility and the smart grid for the renewable energy, and then focuses on a maintenance scheduling in the context of real problems. A synchronous backtrack algorithm, a welD-known method for distributed scheduling problems, has difficulties handling (A) rapid schedule adjustments and (B) impartial assignment. Thus, this paper proposes two kinds of heuristics: (1) parallel assignment and (2) multiple priority strategies, and developed the distributed scheduling system which makes use of the heuristics. It consists of schedulers for each power station and mediation agents which have cloning and merging functions to support the implementation of the heuristics. Finally, the result of experiment shows an improvement when handling the rapid adjustment and the impartiality issues with reasonable computational overhead.