期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
International Collaborations In Geodesy Advance Geoscience Research
1
作者 M.Meghan MILLER 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期23-,共1页
UNAVCO supports geoscience research at 113 US academic Member institutions,and another 104 Associate Member institutions include international universities,laboratories,observatories,academies of science,and a museum.... UNAVCO supports geoscience research at 113 US academic Member institutions,and another 104 Associate Member institutions include international universities,laboratories,observatories,academies of science,and a museum.This diverse membership shares UNAVCO’s purpose at home and abroad,giving UNAVCO global reach in advancing geodesy.Since the mid-1980s,modern geodesy has evolved into a cutting-edge,multi-faceted toolbox with remarkably diverse research and real-world applications,including studies and observation or forecasting of solid-Earth hazards,the dynamics of the atmosphere,climate,near-Earth space environment,and of key environmental parameters such as water storage,soil moisture,and seaand lake-level changes.UNAVCO operates facilities on behalf of the U.S.National Science Foundation to support investigators who use geodetic tools across all of these Earth and atmospheric domains.UNAVCO has built a number of large dense regional networks of GPS stations,including the Earth Scope Plate Boundary Observatory in North America,the COCONetCaribbean network,TLALOCNet in Mexico,GNET in Greenland,and ANET in Antarctica.Going forward,UNAVCO plans to federate the Plate Boundary Observatory(USA),TLALOCNet(Mexico),and COCONet(Caribbean)GPS networks as the Network of the Americas,with upgrades to state-of-the-art,multi-sensor,multi-GNSS observations.While UNAVCO community scientists actively engage in using space and terrestrial geodetic techniques to study geodynamics at all scales,this proliferation of continuous networks is the basis for a suite of recent contributions that focus on improved daily positioning to sense Earth’s elastic response and other perturbations to loading by atmospheric and surface water,oceans,and ice.Day-to-day and sub-daily variations in the GPS vertical and horizontal correlate to increasingly well-understood short-term mass variability,such as monsoonal flooding in Bangladesh,sub-daily changes in tidal loading at continent scales,day-to-day surface water and ice storage in the western U.S.,variations in the rate of GIA in Greenland across a variety of scales,and improved understanding of the inter-annual variation in sea level rise due to changes in terrestrial water storage. 展开更多
关键词 International Collaborations In Geodesy Advance Geoscience Research
下载PDF
板块边界观测数据管理计划
2
作者 Greg Anderson 《地壳构造与地壳应力》 2009年第1期3-24,3-48,共22页
2008年5月12日突发的汶川大地震给我们带来了巨大的灾难,也使我们再一次认识到地震预报的确是一个世界性的难题。虽然我们尚不能征服自然灾害,但是人类对自然灾害发生机理的执着的探索过程在过去和现在都不曾停止过。随着观测技术的提高... 2008年5月12日突发的汶川大地震给我们带来了巨大的灾难,也使我们再一次认识到地震预报的确是一个世界性的难题。虽然我们尚不能征服自然灾害,但是人类对自然灾害发生机理的执着的探索过程在过去和现在都不曾停止过。随着观测技术的提高,20世纪后期以来,国际上一系列以地球科学为主的全球性大型的地球科学研究计划逐步实施,其中包括"上地幔计划"(UMP)、"国际地球动力学计划"(IGP)、"国际岩石圈计划"(ILP)、"海洋钻探计划"(ODP)、"综合海洋钻探计划"(IOP)等。这些重大地球科学计划的实施,为人类探索地球、了解地球提供了大量科学资料,且在地球内部结构,特别是壳幔结构,岩石圈结构、岩石圈的运动、变形以及岩石圈动力学等研究方面取得了许多重要进展。在地震学研究方面,继法国的"地球透镜计划"(GeoScope)之后,美国正在进行的为期15年的"地球透镜计划"(EarthScope),更是"以发展地震科学,促进地震科学在减轻地震灾害、能源资源勘探和保证国家安全等方面的应用,确保美国在地震科学方面的领先地位"为目标,实施了四个大项目,即以利用流动地震台阵勾画美国大陆高精度地下结构为主要目标的"美国台阵"项目(USArray)、以利用GPS和应变仪台阵勾画美国西海岸形变场为主要目标的"板块边界观测"项目(PBO)、以利用遥感技术获取大尺度区域分米至厘米级连续应变为主要目标的"干涉合成孔径雷达"项目(InSAR)、以利用钻孔数据获取圣安德烈斯断层构造变形资料为主要目标的"圣安德烈斯断层深部观测"项目(SAFOD);与此同时,我国也开展了"大陆强震机理与预测"等大型研究项目。这些基础性很强的研究都将逐步为地震预报奠定重要的基础。本刊曾陆续介绍了美国"板块边界观测项目(PBO)计划书"、"(PBO)钻孔应变台网设计纲要",而本期的"板块边界观测数据管理计划"则是介绍该项目的后续情况。参加翻译的人员有:陈征,第一章至第三章;吴立恒,附录A至附录D;李涛,附录E。欧阳祖熙研究员和张宝红对全文进行了总校对。 展开更多
关键词 板块边界观测 数据管理 地球透镜计划 全球定位系统 美国西部 观测网络 激光应变仪 钻孔应变仪
下载PDF
Harnessing the power of immersive virtual reality-visualization and analysis of 3D earth science data sets 被引量:2
3
作者 Jiayan Zhao Jan Oliver Wallgrün +2 位作者 Peter C.LaFemina Jim Normandeau Alexander Klippel 《Geo-Spatial Information Science》 SCIE CSCD 2019年第4期237-250,I0002,共15页
The availability and quantity of remotely sensed and terrestrial geospatial data sets are on the rise.Historically,these data sets have been analyzed and quarried on 2D desktop computers;however,immersive technologies... The availability and quantity of remotely sensed and terrestrial geospatial data sets are on the rise.Historically,these data sets have been analyzed and quarried on 2D desktop computers;however,immersive technologies and specifically immersive virtual reality(iVR)allow for the integration,visualization,analysis,and exploration of these 3D geospatial data sets.iVR can deliver remote and large-scale geospatial data sets to the laboratory,providing embodied experiences of field sites across the earth and beyond.We describe a workflow for the ingestion of geospatial data sets and the development of an iVR workbench,and present the application of these for an experience of Iceland’s Thrihnukar volcano where we:(1)combined satellite imagery with terrain elevation data to create a basic reconstruction of the physical site;(2)used terrestrial LiDAR data to provide a geo-referenced point cloud model of the magmatic-volcanic system,as well as the LiDAR intensity values for the identification of rock types;and(3)used Structure-from-Motion(SfM)to construct a photorealistic point cloud of the inside volcano.The workbench provides tools for the direct manipulation of the georeferenced data sets,including scaling,rotation,and translation,and a suite of geometric measurement tools,including length,area,and volume.Future developments will be inspired by an ongoing user study that formally evaluates the workbench’s mature components in the context of fieldwork and analyses activities. 展开更多
关键词 Immersive virtual reality earth science data visualization WORKFLOW virtual fieldwork VOLCANO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部