期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of irrigation and planting geometry on cotton(Gossypium hirsutum L.)fiber quality and seed composition 被引量:2
1
作者 PINNAMANENI Srinivasa R. ANAPALLI Saseendran S. +2 位作者 SUI Ruixiu BELLALOUI Nacer REDDY Krishna N. 《Journal of Cotton Research》 2021年第1期1-11,共11页
Background:Cotton fiber quality and seed composition play vital roles in the economics of cotton production systems and the cottonseed meal industry.This research aimed to examine the effects of different irrigation l... Background:Cotton fiber quality and seed composition play vital roles in the economics of cotton production systems and the cottonseed meal industry.This research aimed to examine the effects of different irrigation levels and planting geometries on fiber quality and seed composition of cotton(Gossypium hirsutum L.).We conducted a 2-year study in 2018 and 2019 in a warm,humid area in the Southeast United States on Dundee silt loam soil.There were three irrigation treatments in the study.The treatments included irrigating every furrow,or full irrigation(FI),every alternate furrow,or half irrigation(HI),and no irrigation,or rain-fed(RF).Planting geometries were on ridges spaced 102 cm apart and either a single-row(SR)or twin-rows(TR).Results:The results of high-volume instrument(HVI),advanced fiber information systems(AFIS)and near-infrared reflectance spectroscopy(NIRS)showed that irrigation and planting treatments played a significant role in fiber quality and seed composition.Across irrigation treatments,significant differences were seen in fiber properties,including fineness,maturity ratio,micronaire,neps,short fiber,strength,uniformity,upper half mean length(UHML),upper quartile length by weight(UQLw),and yellowness(+b).Irrigation and planting geometry(PG)had a significant effect on micronaire,strength,and UHML while their interaction was significant only for micronaire.The micronaire was negatively affected by irrigation as FI-SR,FI-TR,HI-SR,and HI-TR recorded 11%~12%lower over the RF-SR and TR treatments.The PG played a minor role in determining fiber quality traits like micronaire and nep count.Irrigation treatments produced significantly lower(3%~4%)protein content than rain-fed,while oil content increased significantly(6%~10%).Conclusions:The study results indicate a potential for improving cotton fiber and seed qualities by managing irrigation and planting geometries in cotton production systems in the Mississippi(MS)Delta region.The HI-TR system appears promising for lint and seed quality. 展开更多
关键词 COTTON Fiber quality Seed composition MICRONAIRE Fiber length
下载PDF
Development and Evaluation of an Optical Sensing System for Detection of Herbicide Spray Droplets
2
作者 Yanbo Huang Wei Ma Daniel Fisher 《Advances in Internet of Things》 2021年第1期1-9,共9页
Real time monitoring of herbicide spray droplet drift is important for crop production management and environmental protection. Existing spray droplet drift detection methods, such as water-sensitive paper and tracers... Real time monitoring of herbicide spray droplet drift is important for crop production management and environmental protection. Existing spray droplet drift detection methods, such as water-sensitive paper and tracers of fluorescence and Rubidium chloride, are time-consuming and laborious, and the accuracies are not high in general. Also, the tracer methods indirectly quantify the spray deposition from the concentration of the tracer and may change the drift characteristics of the sprayed herbicides. In this study, a new optical sensor system was developed to directly detect the spray droplets without the need to add any tracer in the spray liquid. The system was prototyped using a single broadband programmable LED light source and a near infrared sensor containing 6 broadband spectral detectors at 610, 680, 730, 760, 810, and 860 nm to build a detection system for monitoring and analysis of herbicide spray droplet drift. A rotatory structure driven by a stepper motor in the system was created to shift the droplet capture line going under the optical sensor to measure and collect the spectral signals that reflect spray drift droplets along the line. The system prototype was tested for detection of small (Very Fine and Fine), medium (Medium), and large (Coarse) droplets within the droplet classifications of the American Society of Agricultural and Biological Engineers. Laboratory testing results indicated that the system could detect the droplets of different sizes and determine the droplet positions on the droplet capture line with 100% accuracy at the wavelength of 610 nm selected from the 6 bands to detect the droplets. 展开更多
关键词 Near Infrared (NIR) Sensor Spray Drift Droplet Detection Plant Protection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部