Photonics integrated circuitry would benefit considerably from the ability to arbitrarily control waveguide cross-sections with high precision and low loss,in order to provide more degrees of freedom in manipulating p...Photonics integrated circuitry would benefit considerably from the ability to arbitrarily control waveguide cross-sections with high precision and low loss,in order to provide more degrees of freedom in manipulating propagating light.Here,we report a new method for femtosecond laser writing of optical-fiber-compatible glass waveguides,namely spherical phase-induced multicore waveguide(SPIM-WG),which addresses this challenging task with three-dimensional on-chip light control.Fabricating in the heating regime with high scanning speed,precise deformation of cross-sections is still achievable along the waveguide,with shapes and sizes finely controllable of high resolution in both horizontal and vertical transversal directions.We observed that these waveguides have high refractive index contrast of 0.017,low propagation loss of 0.14 dB/cm,and very low coupling loss of 0.19 dB coupled from a single-mode fiber.SPIM-WG devices were easily fabricated that were able to perform on-chip beam rotation through varying angles,or manipulate the polarization state of propagating light for target wavelengths.We also demonstrated SPIM-WG mode converters that provide arbitrary adiabatic mode conversion with high efficiency between symmetric and asymmetric nonuniform modes;examples include circular,elliptical modes,and asymmetric modes from ppKTP(periodically poled potassium titanyl phosphate)waveguides which are generally applied in frequency conversion and quantum light sources.Created inside optical glass,these waveguides and devices have the capability to operate across ultra-broad bands from visible to infrared wavelengths.The compatibility with optical fiber also paves the way toward packaged photonic integrated circuitry,which usually needs input and output fiber connections.展开更多
The intrinsic synchronization, multi-color outputs and related carrier-envelope phases (CEP) among pulses bring advantages to synchronously pumped femtosecond optical parametric oscillators and the pumping sources for...The intrinsic synchronization, multi-color outputs and related carrier-envelope phases (CEP) among pulses bring advantages to synchronously pumped femtosecond optical parametric oscillators and the pumping sources for broadband frequency comb generation and ultrashort waveform coherent syn-thesis. In this paper, we discuss our latest research results in this field, which cover the following as-pects: the phase relationship and energy conservation law in an OPO and related experimental verifi-cation; control of the pumping Ti:sapphire femtosecond laser's CEP by self-referencing technology, and its repetition-rate locking by piezoelectric transducer (PZT); CEP locking of the pulses from the OPO by beating the non-phase-matched visible outputs against pump supercontinuum to obtain a driving signal for a fast PZT on the OPO end mirror; the generation of a broadband frequency comb spanning from 400 nm to 2.4 μm with 1.2 kHz bandwidth; and the realization of coherent interference between phase controlled pump pulses and signal second harmonic pulses.展开更多
基金the European Research Council Advanced Grants AdOMiS(695140)UK Engineering and Physical Sciences Research Council grants EP/T001062/1,EP/R004803/01,EP/T00326X/1Austrian Science Fund(FWF)I3984-N36.A.K.acknowledges Israel Innovation Authority KAMIN#69073‘Development of mode converters technology with twisted waveguides on a chip’.C.H.acknowledges Junior Research Fellowship of St John’s College in Oxford.
文摘Photonics integrated circuitry would benefit considerably from the ability to arbitrarily control waveguide cross-sections with high precision and low loss,in order to provide more degrees of freedom in manipulating propagating light.Here,we report a new method for femtosecond laser writing of optical-fiber-compatible glass waveguides,namely spherical phase-induced multicore waveguide(SPIM-WG),which addresses this challenging task with three-dimensional on-chip light control.Fabricating in the heating regime with high scanning speed,precise deformation of cross-sections is still achievable along the waveguide,with shapes and sizes finely controllable of high resolution in both horizontal and vertical transversal directions.We observed that these waveguides have high refractive index contrast of 0.017,low propagation loss of 0.14 dB/cm,and very low coupling loss of 0.19 dB coupled from a single-mode fiber.SPIM-WG devices were easily fabricated that were able to perform on-chip beam rotation through varying angles,or manipulate the polarization state of propagating light for target wavelengths.We also demonstrated SPIM-WG mode converters that provide arbitrary adiabatic mode conversion with high efficiency between symmetric and asymmetric nonuniform modes;examples include circular,elliptical modes,and asymmetric modes from ppKTP(periodically poled potassium titanyl phosphate)waveguides which are generally applied in frequency conversion and quantum light sources.Created inside optical glass,these waveguides and devices have the capability to operate across ultra-broad bands from visible to infrared wavelengths.The compatibility with optical fiber also paves the way toward packaged photonic integrated circuitry,which usually needs input and output fiber connections.
基金Supported by UK Engineering and Physical Sciences Research Council (EPSRC), Coherent Inc.the National Natural Science Foundation of China (Grant No. 60308001)
文摘The intrinsic synchronization, multi-color outputs and related carrier-envelope phases (CEP) among pulses bring advantages to synchronously pumped femtosecond optical parametric oscillators and the pumping sources for broadband frequency comb generation and ultrashort waveform coherent syn-thesis. In this paper, we discuss our latest research results in this field, which cover the following as-pects: the phase relationship and energy conservation law in an OPO and related experimental verifi-cation; control of the pumping Ti:sapphire femtosecond laser's CEP by self-referencing technology, and its repetition-rate locking by piezoelectric transducer (PZT); CEP locking of the pulses from the OPO by beating the non-phase-matched visible outputs against pump supercontinuum to obtain a driving signal for a fast PZT on the OPO end mirror; the generation of a broadband frequency comb spanning from 400 nm to 2.4 μm with 1.2 kHz bandwidth; and the realization of coherent interference between phase controlled pump pulses and signal second harmonic pulses.