The “mainstream” climatology (MSC)—i.e. which includes the Intergovernmental Panel on Climate Change (IPCC) community—considers the present day massive release of greenhouse gases into the atmosphere as the main c...The “mainstream” climatology (MSC)—i.e. which includes the Intergovernmental Panel on Climate Change (IPCC) community—considers the present day massive release of greenhouse gases into the atmosphere as the main cause of the current global warming trend. The main inference from this stance is that the increase in temperature must occur after the release of greenhouse gases originating from the anthropic activities. However, no scientific evidence has been provided for this basic notion. Earth paleoclimatic records document the antecedence of temperature over CO<sub>2</sub> levels. For the past 65 Ma, the temperature parameter has controlled the subsequent increase in CO<sub>2</sub>. This includes the three rapid aberrant shifts and extreme climate transients at 55 Ma, 34 Ma, and 23 Ma REF _Ref159913672 \r \h \* MERGEFORMAT [1]. The simple fact of their existence points to the potential for highly nonlinear responses in climate forcing. Whatever these shifts and transients are, CO<sub>2</sub> remains a second order parameter in their evolution through time. Confronted with the past, a suitable response must therefore be given to the unresolved question of whether the CO<sub>2</sub> trends precede the temperature trends in the current period, or not. The assertion that the current global warming is anthropogenic in origin implicitly presupposes a change of paradigm, with the consequence (the increase in CO<sub>2</sub> levels) that occurred in Earth’s past being positioned as the cause of the warming for its present day climatic evolution. The compulsory assumption regarding the antecedence of CO<sub>2</sub> levels over the temperature trends is associated with the haziness of the methodological framework—i.e. the paradigm—and tightens the research fields on the likely origins of global warming. The possible involvement of an “aberrant” natural event, hidden behind the massive release of greenhouse gases, has not been considered by the MSC.展开更多
Gravimetric and geologic data show that the reactivation of the Neogene Interandean depression and/or the ~75 - 65 Ma ophiolite suture into the modern dynamic of the Andes controlled the Gulf of Guayaquil Tumbes basin...Gravimetric and geologic data show that the reactivation of the Neogene Interandean depression and/or the ~75 - 65 Ma ophiolite suture into the modern dynamic of the Andes controlled the Gulf of Guayaquil Tumbes basin (GGTB) location and evolution during the past 1.8 - 1.6 Myr at least. Depending on whether the remobilization occurred along the interandean depression or the ophiolite suture, the GGTB evolved trough pure or simple shear mechanisms, respectively. Because the GGTB exhibits an along strike tectonic asymmetry associated with a pervasive seismic gap, the simple shear solution is more likely. Tectonic inversion occurred along a mid-crust detachment (the Mid-Crust detachment hereafter) matching the ophiolite suture that accommodates the North Andean Block (NAB) northward drift. The so-called Decoupling Strip located at the shelf slope break accommodated the tensional stress rotation from N-S along the shelf area i.e. NAB-drift induced to E-W along the continental margin i.e. subduction-erosion-induced. The landward dipping Woollard detachment system located at the Upper-Lower slope boundary connects the subduction channel at depth, allowing the Upper slope to evolve independently from the Lower slope wedge. The long-term recurrence interval between earthquakes, the strong interplate coupling, and the aseismic creeping deformation acting along the main low-angle detachments i.e. the Woollard and the Mid-Crust detachments may account for the pervasive seismic gap at the GGTB area. Because the subduction channel exhibits no record of significant seismic activity, no evidence exists to establish a link between the GGTB sustained subsidence and a basin-centered asperity. Because the GGTB is a promising site of hydrocarbon resources, to understand processes at the origin of this escape-induced forearc basin has a major economic interest.展开更多
Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposit...Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposition of Hg on glassy carbon electrode and Tl on Hg film by cyclic voltammetry, scanning electron microscopy, chronoamperometry and impedance techniques. The results showed a germination and growth of a 3D Hg phase on glassy carbon electrode. Similarly, the electrodeposition of Tl on Hg follows a 3D three-dimensional nucleation with diffusion controlled growth. The impedance measurements reveal an easier charge transfer on the Tl film.展开更多
Monocytes are effector immune cells but a precise anal-ysis of their role in immune response has been preclud-ed by their heterogeneity. Indeed, human monocytesare composed of at least three different subsets withdiff...Monocytes are effector immune cells but a precise anal-ysis of their role in immune response has been preclud-ed by their heterogeneity. Indeed, human monocytesare composed of at least three different subsets withdifferent phenotypic characteristics and functional prop-erties, the so-called classical, intermediate and non-classical monocytes. A review of the literature showsthat these monocyte subsets are differently affectedduring viral, bacterial, parasitic and fungal infections.The expansion of the CD16+ compartment (intermedi-ate and non-classical monocytes) is typically observedin the majority of infectious diseases and the increasedproportion of CD16+ monocytes is likely related totheir activation through their direct interaction with thepathogen or the infammatory context. In contrast, thenumber of non-classical and intermediate monocytesis decreased in Q fever endocarditis, suggesting thatcomplex mechanisms govern the equilibrium among monocyte subsets. The measurement of monocyte sub-sets would be useful in better understanding of the role of monocyte activation in the pathophysiology of infec-tious diseases.展开更多
This paper studies a new positioning beacon for railway transport using Ultra Wideband (UWB) radio and Time Reversal (TR) techniques. UWB radio has the potential to offer a good level of performance in terms of locali...This paper studies a new positioning beacon for railway transport using Ultra Wideband (UWB) radio and Time Reversal (TR) techniques. UWB radio has the potential to offer a good level of performance in terms of localization accuracy. Time Reversal channel pre-filtering facilitates signal detection and also helps increasing the received energy in the targeted area. In this paper, we evaluate the characteristics of TR technique in terms of temporal focusing. The theoretical and simulation results for Power Delay Profile, equivalent channel model and focusing gain of TR-UWB are given. We analyze the contribution of Time Reversal associated with UWB technology to enhance the localization resolution. The IEEE 802.15.3achannel models are used to evaluate the performance of this system. In terms of localization error, the theoretical and simulation results show that TR-UWB technique delivers improved performance over the UWB localization approach.展开更多
Malaria caused by the Plasmodium falciparum parasite is responsible for more than 240 million cases per year and killed 627,000 people in 2020,mostly African children.The malaria parasite is transmitted by mosquitos b...Malaria caused by the Plasmodium falciparum parasite is responsible for more than 240 million cases per year and killed 627,000 people in 2020,mostly African children.The malaria parasite is transmitted by mosquitos belonging to the genus Anopheles.After an asymptomatic liver stage,the parasite is released into the bloodstream to invade red blood cells(RBCs)and replicate asexually.This erythrocytic phase is associated with a variety of clinical manifestations,including mild and severe malaria.Cerebral malaria(CM)is one of the most severe forms,characterized by the sequestration of parasitized RBCs in the small capillaries of the brain and the local development of cytokine-mediated inflammation.Genetic variants in genes encoding proteins involved in red blood cell physiology are protective factors against severe malaria,as clearly demonstrated for the sickle cell variant of hemoglobin(HbS).展开更多
Dear Editor,Atovaquone(ATO),a mitochondrial inhibitor,has anti-cancer effects[1].Based on ATO,we developed mitochondria-targeted atovaquone(Mito-ATO)that had even stronger anti-tumor efficacy than ATO[2].We syn-thesiz...Dear Editor,Atovaquone(ATO),a mitochondrial inhibitor,has anti-cancer effects[1].Based on ATO,we developed mitochondria-targeted atovaquone(Mito-ATO)that had even stronger anti-tumor efficacy than ATO[2].We syn-thesized Mito-ATO by attaching the bulky triphenylphos-phonium(TPP)group to ATO via a ten-carbon alkyl chain(Supplementary file of methods;Supplementary Figure S1).展开更多
Facial imaging is a term used to describe methods that use facial images to assist or facili-tate human identification. This pertains to two craniofacial identification procedures that use skulls and faces—facial app...Facial imaging is a term used to describe methods that use facial images to assist or facili-tate human identification. This pertains to two craniofacial identification procedures that use skulls and faces—facial approximation and photographic superimposition—as well as face-only methods for age progression/regression, the construction of facial graphics from eye-witness memory (including composites and artistic sketches), facial depiction, face mapping and newly emerging methods of molecular photofitting. Given the breadth of these facial imaging techniques, it is not surprising that a broad array of subject-matter experts partici-pate in and/or contribute to the formulation and implementation of these methods (includ-ing forensic odontologists, forensic artists, police officers, electrical engineers, anatomists, geneticists, medical image specialists, psychologists, computer graphic programmers and software developers). As they are concerned with the physical characteristics of humans, each of these facial imaging areas also falls in the domain of physical anthropology, although not all of them have been traditionally regarded as such. This too offers useful opportunities to adapt established methods in one domain to others more traditionally held to be disciplines within physical anthropology (e.g. facial approximation, craniofacial super-imposition and face photo-comparison). It is important to note that most facial imaging methods are not currently used for identification but serve to assist authorities in narrowing or directing investigations such that other, more potent, methods of identification can be used (e.g. DNA). Few, if any, facial imaging approaches can be considered honed end-stage scientific methods, with major opportunities for physical anthropologists to make meaningful contributions. Some facial imaging methods have considerably stronger scientific underpin-nings than others (e.g. facial approximation versus face mapping), some currently lie entirely within the artistic sphere (facial depiction), and yet others are so aspirational that realistic capacity to obtain their aims has strongly been questioned despite highly advanced tech-nical approaches (molecular photofitting). All this makes for a broad-ranging, dynamic and energetic field that is in a constant state of flux. This manuscript provides a theoretical snap-shot of the purposes of these methods, the state of science as it pertains to them, and their latest research developments.展开更多
In gliomas, the canonical Wingless/Int(WNT)/b-catenin pathway is increased while peroxisome proliferator-activated receptor gamma(PPAR-c) is downregulated.The two systems act in an opposite manner. This review foc...In gliomas, the canonical Wingless/Int(WNT)/b-catenin pathway is increased while peroxisome proliferator-activated receptor gamma(PPAR-c) is downregulated.The two systems act in an opposite manner. This review focuses on the interplay between WNT/b-catenin signaling and PPAR-c and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/bcatenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis,tumor growth, and angiogenesis. Activation of PPAR-c agonists inhibits various signaling pathways such as the JAK/STAT, WNT/b-catenin, and PI3 K/Akt pathways,which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin,and sulforaphane downregulate the WNT/b-catenin pathway through the upregulation of PPAR-c and thus appear to provide an interesting therapeutic approach for gliomas.Temozolomide(TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.展开更多
文摘The “mainstream” climatology (MSC)—i.e. which includes the Intergovernmental Panel on Climate Change (IPCC) community—considers the present day massive release of greenhouse gases into the atmosphere as the main cause of the current global warming trend. The main inference from this stance is that the increase in temperature must occur after the release of greenhouse gases originating from the anthropic activities. However, no scientific evidence has been provided for this basic notion. Earth paleoclimatic records document the antecedence of temperature over CO<sub>2</sub> levels. For the past 65 Ma, the temperature parameter has controlled the subsequent increase in CO<sub>2</sub>. This includes the three rapid aberrant shifts and extreme climate transients at 55 Ma, 34 Ma, and 23 Ma REF _Ref159913672 \r \h \* MERGEFORMAT [1]. The simple fact of their existence points to the potential for highly nonlinear responses in climate forcing. Whatever these shifts and transients are, CO<sub>2</sub> remains a second order parameter in their evolution through time. Confronted with the past, a suitable response must therefore be given to the unresolved question of whether the CO<sub>2</sub> trends precede the temperature trends in the current period, or not. The assertion that the current global warming is anthropogenic in origin implicitly presupposes a change of paradigm, with the consequence (the increase in CO<sub>2</sub> levels) that occurred in Earth’s past being positioned as the cause of the warming for its present day climatic evolution. The compulsory assumption regarding the antecedence of CO<sub>2</sub> levels over the temperature trends is associated with the haziness of the methodological framework—i.e. the paradigm—and tightens the research fields on the likely origins of global warming. The possible involvement of an “aberrant” natural event, hidden behind the massive release of greenhouse gases, has not been considered by the MSC.
文摘Gravimetric and geologic data show that the reactivation of the Neogene Interandean depression and/or the ~75 - 65 Ma ophiolite suture into the modern dynamic of the Andes controlled the Gulf of Guayaquil Tumbes basin (GGTB) location and evolution during the past 1.8 - 1.6 Myr at least. Depending on whether the remobilization occurred along the interandean depression or the ophiolite suture, the GGTB evolved trough pure or simple shear mechanisms, respectively. Because the GGTB exhibits an along strike tectonic asymmetry associated with a pervasive seismic gap, the simple shear solution is more likely. Tectonic inversion occurred along a mid-crust detachment (the Mid-Crust detachment hereafter) matching the ophiolite suture that accommodates the North Andean Block (NAB) northward drift. The so-called Decoupling Strip located at the shelf slope break accommodated the tensional stress rotation from N-S along the shelf area i.e. NAB-drift induced to E-W along the continental margin i.e. subduction-erosion-induced. The landward dipping Woollard detachment system located at the Upper-Lower slope boundary connects the subduction channel at depth, allowing the Upper slope to evolve independently from the Lower slope wedge. The long-term recurrence interval between earthquakes, the strong interplate coupling, and the aseismic creeping deformation acting along the main low-angle detachments i.e. the Woollard and the Mid-Crust detachments may account for the pervasive seismic gap at the GGTB area. Because the subduction channel exhibits no record of significant seismic activity, no evidence exists to establish a link between the GGTB sustained subsidence and a basin-centered asperity. Because the GGTB is a promising site of hydrocarbon resources, to understand processes at the origin of this escape-induced forearc basin has a major economic interest.
文摘Thallium is a heavy metal highly toxic to the biosphere. It can be determined by anodic stripping voltammetry after deposition on mercury film. The aim of this work is to study the conditions and mechanisms of deposition of Hg on glassy carbon electrode and Tl on Hg film by cyclic voltammetry, scanning electron microscopy, chronoamperometry and impedance techniques. The results showed a germination and growth of a 3D Hg phase on glassy carbon electrode. Similarly, the electrodeposition of Tl on Hg follows a 3D three-dimensional nucleation with diffusion controlled growth. The impedance measurements reveal an easier charge transfer on the Tl film.
文摘Monocytes are effector immune cells but a precise anal-ysis of their role in immune response has been preclud-ed by their heterogeneity. Indeed, human monocytesare composed of at least three different subsets withdifferent phenotypic characteristics and functional prop-erties, the so-called classical, intermediate and non-classical monocytes. A review of the literature showsthat these monocyte subsets are differently affectedduring viral, bacterial, parasitic and fungal infections.The expansion of the CD16+ compartment (intermedi-ate and non-classical monocytes) is typically observedin the majority of infectious diseases and the increasedproportion of CD16+ monocytes is likely related totheir activation through their direct interaction with thepathogen or the infammatory context. In contrast, thenumber of non-classical and intermediate monocytesis decreased in Q fever endocarditis, suggesting thatcomplex mechanisms govern the equilibrium among monocyte subsets. The measurement of monocyte sub-sets would be useful in better understanding of the role of monocyte activation in the pathophysiology of infec-tious diseases.
文摘This paper studies a new positioning beacon for railway transport using Ultra Wideband (UWB) radio and Time Reversal (TR) techniques. UWB radio has the potential to offer a good level of performance in terms of localization accuracy. Time Reversal channel pre-filtering facilitates signal detection and also helps increasing the received energy in the targeted area. In this paper, we evaluate the characteristics of TR technique in terms of temporal focusing. The theoretical and simulation results for Power Delay Profile, equivalent channel model and focusing gain of TR-UWB are given. We analyze the contribution of Time Reversal associated with UWB technology to enhance the localization resolution. The IEEE 802.15.3achannel models are used to evaluate the performance of this system. In terms of localization error, the theoretical and simulation results show that TR-UWB technique delivers improved performance over the UWB localization approach.
基金supported by the African Higher Education Centers of Excellence Project(CEA-SAMEF)at UCAD,the Pasteur Institute in Dakar,the Pasteur Institute in Paris,the French Embassy in Senegal,INSERM,and Aix-Marseille University.MA and SN were supported by a Ph.D.fellowship from the French Ministry of Research and the Higher Education Commission(HEC)in Pakistan,respectivelysupport from the French Government under the France 2030 Investment Plan,as part of the Initiative d'Excellence d'Aix-Marseille Université-A∗MIDEX-Institute MarMaRa(No.AMX-19-IET-007).
文摘Malaria caused by the Plasmodium falciparum parasite is responsible for more than 240 million cases per year and killed 627,000 people in 2020,mostly African children.The malaria parasite is transmitted by mosquitos belonging to the genus Anopheles.After an asymptomatic liver stage,the parasite is released into the bloodstream to invade red blood cells(RBCs)and replicate asexually.This erythrocytic phase is associated with a variety of clinical manifestations,including mild and severe malaria.Cerebral malaria(CM)is one of the most severe forms,characterized by the sequestration of parasitized RBCs in the small capillaries of the brain and the local development of cytokine-mediated inflammation.Genetic variants in genes encoding proteins involved in red blood cell physiology are protective factors against severe malaria,as clearly demonstrated for the sickle cell variant of hemoglobin(HbS).
基金This research was supported by National Insti-tutes of Health(NIH):R01CA223804,R01CA232433,R01CA205633,and R01CA280746.
文摘Dear Editor,Atovaquone(ATO),a mitochondrial inhibitor,has anti-cancer effects[1].Based on ATO,we developed mitochondria-targeted atovaquone(Mito-ATO)that had even stronger anti-tumor efficacy than ATO[2].We syn-thesized Mito-ATO by attaching the bulky triphenylphos-phonium(TPP)group to ATO via a ten-carbon alkyl chain(Supplementary file of methods;Supplementary Figure S1).
文摘Facial imaging is a term used to describe methods that use facial images to assist or facili-tate human identification. This pertains to two craniofacial identification procedures that use skulls and faces—facial approximation and photographic superimposition—as well as face-only methods for age progression/regression, the construction of facial graphics from eye-witness memory (including composites and artistic sketches), facial depiction, face mapping and newly emerging methods of molecular photofitting. Given the breadth of these facial imaging techniques, it is not surprising that a broad array of subject-matter experts partici-pate in and/or contribute to the formulation and implementation of these methods (includ-ing forensic odontologists, forensic artists, police officers, electrical engineers, anatomists, geneticists, medical image specialists, psychologists, computer graphic programmers and software developers). As they are concerned with the physical characteristics of humans, each of these facial imaging areas also falls in the domain of physical anthropology, although not all of them have been traditionally regarded as such. This too offers useful opportunities to adapt established methods in one domain to others more traditionally held to be disciplines within physical anthropology (e.g. facial approximation, craniofacial super-imposition and face photo-comparison). It is important to note that most facial imaging methods are not currently used for identification but serve to assist authorities in narrowing or directing investigations such that other, more potent, methods of identification can be used (e.g. DNA). Few, if any, facial imaging approaches can be considered honed end-stage scientific methods, with major opportunities for physical anthropologists to make meaningful contributions. Some facial imaging methods have considerably stronger scientific underpin-nings than others (e.g. facial approximation versus face mapping), some currently lie entirely within the artistic sphere (facial depiction), and yet others are so aspirational that realistic capacity to obtain their aims has strongly been questioned despite highly advanced tech-nical approaches (molecular photofitting). All this makes for a broad-ranging, dynamic and energetic field that is in a constant state of flux. This manuscript provides a theoretical snap-shot of the purposes of these methods, the state of science as it pertains to them, and their latest research developments.
文摘In gliomas, the canonical Wingless/Int(WNT)/b-catenin pathway is increased while peroxisome proliferator-activated receptor gamma(PPAR-c) is downregulated.The two systems act in an opposite manner. This review focuses on the interplay between WNT/b-catenin signaling and PPAR-c and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/bcatenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis,tumor growth, and angiogenesis. Activation of PPAR-c agonists inhibits various signaling pathways such as the JAK/STAT, WNT/b-catenin, and PI3 K/Akt pathways,which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin,and sulforaphane downregulate the WNT/b-catenin pathway through the upregulation of PPAR-c and thus appear to provide an interesting therapeutic approach for gliomas.Temozolomide(TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.