Researchers face di culties in studying the e ects of driveline e ciency on car fuel economy via bench and road tests because of long working periods, high costs, and heavy workloads. To simplify the study process and...Researchers face di culties in studying the e ects of driveline e ciency on car fuel economy via bench and road tests because of long working periods, high costs, and heavy workloads. To simplify the study process and shorten test cycles, a car fuel economy simulation forecast method for combining computer simulation forecasting with bench tests is proposed. Taking a continuously variable transmission(CVT) as the research object, a transmission e ?ciency model based on a bench test is constructed. An optimal economic variogram based on the original CVT vari?ogram, the boundary conditions of vehicle performance, the road conditions and the driving behavior of the driver is generated in the Gear Shift Program(GSP)?Generation module in AVL Cruise. And on this basis a driveline simulation model that can calculate the fuel consumption based on the driveline data of a test car is built. The model is used to forecast fuel consumption and calculate real?time CVT e ciency under di erent conditions. Contrastive analyses on simulation results and real car drum test results are made. The largest error between simulation results and drum test results in driving cycles is 4.099%, which is 5.449% under constant velocity condition in driver control mode and 4.2% under constant velocity condition in automatic cruise mode. The results confirm the feasibility of the method and the good performance of the driveline simulation model in accurately forecasting fuel consumption. The method can e ciently investigate the e ects of driveline e ciency on car fuel economy. Moreover, this research provides instruc?tion for accurately forecasting fuel economy as well as references for studies on the e ects of drivelines on car fuel economy.展开更多
This paper compares the torque characteristics of single stator permanent magnet synchronous motor(PMSM)and double-stator PMSM under different split-ratios,air-gap lengths and shaft diameters by finite element method....This paper compares the torque characteristics of single stator permanent magnet synchronous motor(PMSM)and double-stator PMSM under different split-ratios,air-gap lengths and shaft diameters by finite element method.Firstly,the effects of split-ratio towards the torque characteristics of the two motor structures under different air-gap lengths are researched,the results show that the optimal split-ratios of the two motor structures do not change under different air-gap lengths,and the optimal split-ratio of the double-stator motor is greater than that of single-stator,and the torque of the double-stator motor is greater than that of single-stator motor with arbitrary split-ratio under the same air-gap length;Finally,the effects of the shaft diameter to the torque of the two motor structures are investigated,obtaining that with the increasing of shaft diameter,the electromagnetic torque of the single-stator motor is almost unchanged,however,the torque of the double-stator is gradually reduced,when the shaft diameter reached a certain extent,the electromagnetic torque of the double-stator motor is smaller than that of single-stator motor with the split ratio within a certain range,and the torque/quality ratio of the double-stator motor is smaller than that of single-stator motor with their optimal split ratio separately.展开更多
Fatigue fracture of materials and structures is one of the most common failure modes in engineering applications.Under multiaxial non proportional loading condition,a large number of materials show non proportional ha...Fatigue fracture of materials and structures is one of the most common failure modes in engineering applications.Under multiaxial non proportional loading condition,a large number of materials show non proportional hardening characteristics,which results in a significant reduction of fatigue life.In this paper,a review on energy methods for multiaxial fatigue life prediction has been carried out.The energy methods are divided into three categories:energy based models without considering the loading path effect,energy based models combined with the critical plane method,and energy based models considering the loading path effect.Among these categories,energy based models considering the loading path effect are introduced in detail since they involve the non proportional hardening effect in multiaxial fatigue.展开更多
Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying princi...Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying principles involved in insect flights remain largely unknown. A systematic study was carried on insect flights by using a combination of several advanced techniques to develop new models for the simulation and analysis of the wing membrane and veins of three types of insect wings, namely dragonfly (Pantala flavescens Fabricius), honeybee (Apis cerana cerana Fabricius) and fly (Sarcophaga carnaria Linnaeus). In order to gain insights into the flight mechanics of insects, reverse engineering methods were used to establish three-dimensional geometrical models of the membranous wings, so we can make a comparative analysis. Then nano-mechanical test of the three insect wing membranes was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. Finally, a computational model was established by using the finite element analysis (ANSYS) to analyze and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of thin solid films and 2D advanced engineering composite materials.展开更多
During the initial phases of operation following the construction or renovation of existing buildings,the availability of historical power usage data is limited,which leads to lower accuracy in load forecasting and hi...During the initial phases of operation following the construction or renovation of existing buildings,the availability of historical power usage data is limited,which leads to lower accuracy in load forecasting and hinders normal usage.Fortunately,by transferring load data from similar buildings,it is possible to enhance forecasting accuracy.However,indiscriminately expanding all source domain data to the target domain is highly likely to result in negative transfer learning.This study explores the feasibility of utilizing similar buildings(source domains)in transfer learning by implementing and comparing two distinct forms of multi-source transfer learning.Firstly,this study focuses on the Higashita area in Kitakyushu City,Japan,as the research object.Four buildings that exhibit the highest similarity to the target buildings within this area were selected for analysis.Next,the two-stage TrAdaBoost.R^(2) algorithm is used for multi-source transfer learning,and its transfer effect is analyzed.Finally,the application effects of instance-based(IBMTL)and feature-based(FBMTL)multi-source transfer learning are compared,which explained the effect of the source domain data on the forecasting accuracy in different transfer modes.The results show that combining the two-stage TrAdaBoost.R^(2) algorithm with multi-source data can reduce the CV-RMSE by 7.23%compared to a single-source domain,and the accuracy improvement is significant.At the same time,multi-source transfer learning,which is based on instance,can better supplement the integrity of the target domain data and has a higher forecasting accuracy.Overall,IBMTL tends to retain effective data associations and FBMTL shows higher forecasting stability.The findings of this study,which include the verification of real-life algorithm application and source domain availability,can serve as a theoretical reference for implementing transfer learning in load forecasting.展开更多
This paper focuses on the laminar flame instability of three high molecular weight n-alkanes,namely n-hexane,n-octane,and n-decane.The experiment was carried out in a constant volume combustion bomb to get the flame i...This paper focuses on the laminar flame instability of three high molecular weight n-alkanes,namely n-hexane,n-octane,and n-decane.The experiment was carried out in a constant volume combustion bomb to get the flame images.The critical radius under different conditions was extracted using the image processing program.Combined with the existing critical Peclet number theory,the dominant factors of flame instability under current conditions for three n-alkanes can be figured out.Moreover,the average cell size(equivalent cell radius,R_(cell))was extracted to provide quantitative analysis of the flame cellular structure,based on the method developed in this work.The theoretical R_(cell)were also calculated and compared with the experimental results to validate the proposed method.展开更多
In order to improve the driving dynamics and riding comfort of pure electric vehicles,taking a two-speed I-AMT(Inverse-Automatic Mechanical Transmission)with rear friction clutch as the research object,a gear shift st...In order to improve the driving dynamics and riding comfort of pure electric vehicles,taking a two-speed I-AMT(Inverse-Automatic Mechanical Transmission)with rear friction clutch as the research object,a gear shift strategy,which consists of the open-loop control of the clutch position control and the closed-loop control of the drive motor speed control,is proposed.Considering the inherent time-delay and external disturbances within the motor speed adjustment system,a two DOF(degree-of-freedom)Smith predictor with feedforward input is designed to track the target speed of the drive motor.The feedforward input is used to eliminate the influence of clutch sliding friction on the motor speed control,while the feedback speed tracking controller is applied to realize the speed tracking performance with the existence of time-delay and the external disturbance.In order to verify the effectiveness of the gear shift control strategy and the accuracy of the two DOF Smith controller with feedforward control,simulation results comparison is firstly carried out to illustrate the effectiveness of the control scheme.Then,a light pure electric vehicle equipped with I-AMT was used for downshift experiments under large throttle,which is the most difficult working scenario to control the transmission.The experimental results show that the two DOF Smith controller can eliminate the influence of time-delay on the closed-loop control,and the proposed whole gear shift control strategy can limit the clutch slippage time within 1.5 s,resulting in a smaller shift jerk,thus guarantee the driving dynamics and riding comfort simultaneously.展开更多
The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components,especially annular damage on the contact area of the valve ball and on the valve seat of the spherical ...The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components,especially annular damage on the contact area of the valve ball and on the valve seat of the spherical unloading valve in the high-pressure pump.In previous study,the authors have analyzed the damage on the unloading valve and demonstrated that it is caused neither by static damage nor fatigue damage and have put forward the hypothesis of fretting wear.This paper is based on the establishment of the statically indeterminate structure of the unloading valve.The micro friction parameters(stress,friction coefficient,etc.)required for the numerical iterative calculation of fretting wear are calculated.In addition,based on the grid adaptive technology and a modified Archard wear model,the fretting wear is calculated quantitatively and is in good agreement with experimental results.Based on that verification,the wear laws of the valve ball and valve seat under the same hardness,different contact angles,and different assembly stresses,are analyzed in detail,and reasoned suggestions for the structural design and assembly design of the ball valve are given.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51575220)International S&T Cooperation Program of China(Grant No.2014DFA71790)
文摘Researchers face di culties in studying the e ects of driveline e ciency on car fuel economy via bench and road tests because of long working periods, high costs, and heavy workloads. To simplify the study process and shorten test cycles, a car fuel economy simulation forecast method for combining computer simulation forecasting with bench tests is proposed. Taking a continuously variable transmission(CVT) as the research object, a transmission e ?ciency model based on a bench test is constructed. An optimal economic variogram based on the original CVT vari?ogram, the boundary conditions of vehicle performance, the road conditions and the driving behavior of the driver is generated in the Gear Shift Program(GSP)?Generation module in AVL Cruise. And on this basis a driveline simulation model that can calculate the fuel consumption based on the driveline data of a test car is built. The model is used to forecast fuel consumption and calculate real?time CVT e ciency under di erent conditions. Contrastive analyses on simulation results and real car drum test results are made. The largest error between simulation results and drum test results in driving cycles is 4.099%, which is 5.449% under constant velocity condition in driver control mode and 4.2% under constant velocity condition in automatic cruise mode. The results confirm the feasibility of the method and the good performance of the driveline simulation model in accurately forecasting fuel consumption. The method can e ciently investigate the e ects of driveline e ciency on car fuel economy. Moreover, this research provides instruc?tion for accurately forecasting fuel economy as well as references for studies on the e ects of drivelines on car fuel economy.
基金supported in part by the National Natural Science Foundation of China under Grant 51977011。
文摘This paper compares the torque characteristics of single stator permanent magnet synchronous motor(PMSM)and double-stator PMSM under different split-ratios,air-gap lengths and shaft diameters by finite element method.Firstly,the effects of split-ratio towards the torque characteristics of the two motor structures under different air-gap lengths are researched,the results show that the optimal split-ratios of the two motor structures do not change under different air-gap lengths,and the optimal split-ratio of the double-stator motor is greater than that of single-stator,and the torque of the double-stator motor is greater than that of single-stator motor with arbitrary split-ratio under the same air-gap length;Finally,the effects of the shaft diameter to the torque of the two motor structures are investigated,obtaining that with the increasing of shaft diameter,the electromagnetic torque of the single-stator motor is almost unchanged,however,the torque of the double-stator is gradually reduced,when the shaft diameter reached a certain extent,the electromagnetic torque of the double-stator motor is smaller than that of single-stator motor with the split ratio within a certain range,and the torque/quality ratio of the double-stator motor is smaller than that of single-stator motor with their optimal split ratio separately.
基金the National Natural Science Foundation of China(Grant Nos.11772106 and 11572227).
文摘Fatigue fracture of materials and structures is one of the most common failure modes in engineering applications.Under multiaxial non proportional loading condition,a large number of materials show non proportional hardening characteristics,which results in a significant reduction of fatigue life.In this paper,a review on energy methods for multiaxial fatigue life prediction has been carried out.The energy methods are divided into three categories:energy based models without considering the loading path effect,energy based models combined with the critical plane method,and energy based models considering the loading path effect.Among these categories,energy based models considering the loading path effect are introduced in detail since they involve the non proportional hardening effect in multiaxial fatigue.
基金Funded by the National Natural Science Foundation of China(Nos.31172144,51475204)the National Science&Technology Pillar Program of China in the Twelfth Five-Year Plan Period(2014BAD06B03)+1 种基金the Exchange Projects of the Royal Academy of Engineering,UK(Major Award,2010-2011)the "Project 985" of Jilin University
文摘Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying principles involved in insect flights remain largely unknown. A systematic study was carried on insect flights by using a combination of several advanced techniques to develop new models for the simulation and analysis of the wing membrane and veins of three types of insect wings, namely dragonfly (Pantala flavescens Fabricius), honeybee (Apis cerana cerana Fabricius) and fly (Sarcophaga carnaria Linnaeus). In order to gain insights into the flight mechanics of insects, reverse engineering methods were used to establish three-dimensional geometrical models of the membranous wings, so we can make a comparative analysis. Then nano-mechanical test of the three insect wing membranes was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. Finally, a computational model was established by using the finite element analysis (ANSYS) to analyze and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of thin solid films and 2D advanced engineering composite materials.
基金This research was supported by the National Key Research and Development Program of China(No.2023YFC3807102).
文摘During the initial phases of operation following the construction or renovation of existing buildings,the availability of historical power usage data is limited,which leads to lower accuracy in load forecasting and hinders normal usage.Fortunately,by transferring load data from similar buildings,it is possible to enhance forecasting accuracy.However,indiscriminately expanding all source domain data to the target domain is highly likely to result in negative transfer learning.This study explores the feasibility of utilizing similar buildings(source domains)in transfer learning by implementing and comparing two distinct forms of multi-source transfer learning.Firstly,this study focuses on the Higashita area in Kitakyushu City,Japan,as the research object.Four buildings that exhibit the highest similarity to the target buildings within this area were selected for analysis.Next,the two-stage TrAdaBoost.R^(2) algorithm is used for multi-source transfer learning,and its transfer effect is analyzed.Finally,the application effects of instance-based(IBMTL)and feature-based(FBMTL)multi-source transfer learning are compared,which explained the effect of the source domain data on the forecasting accuracy in different transfer modes.The results show that combining the two-stage TrAdaBoost.R^(2) algorithm with multi-source data can reduce the CV-RMSE by 7.23%compared to a single-source domain,and the accuracy improvement is significant.At the same time,multi-source transfer learning,which is based on instance,can better supplement the integrity of the target domain data and has a higher forecasting accuracy.Overall,IBMTL tends to retain effective data associations and FBMTL shows higher forecasting stability.The findings of this study,which include the verification of real-life algorithm application and source domain availability,can serve as a theoretical reference for implementing transfer learning in load forecasting.
基金supported by the National Natural Science Foundation of China(52106182,51888103)the National Science and Technology Major Project(2019-Ⅲ-0018-0062)+1 种基金supported by the State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2021016)Shaanxi Nature Science Foundation(No.2021JQ-265)。
文摘This paper focuses on the laminar flame instability of three high molecular weight n-alkanes,namely n-hexane,n-octane,and n-decane.The experiment was carried out in a constant volume combustion bomb to get the flame images.The critical radius under different conditions was extracted using the image processing program.Combined with the existing critical Peclet number theory,the dominant factors of flame instability under current conditions for three n-alkanes can be figured out.Moreover,the average cell size(equivalent cell radius,R_(cell))was extracted to provide quantitative analysis of the flame cellular structure,based on the method developed in this work.The theoretical R_(cell)were also calculated and compared with the experimental results to validate the proposed method.
基金the National Natural Science Foundation of China under Grant 62003244the Perspective Study Funding of Nanchang Automotive Institute of Intelligence and New Energy+1 种基金Tongji University under Grant TPD-TC202110-10,in part by the Jilin Provincial Science&Technology Department under Grant 20200301011RQthe Fundamental Research Funds for the Central Universities under Grant 22120210160.
文摘In order to improve the driving dynamics and riding comfort of pure electric vehicles,taking a two-speed I-AMT(Inverse-Automatic Mechanical Transmission)with rear friction clutch as the research object,a gear shift strategy,which consists of the open-loop control of the clutch position control and the closed-loop control of the drive motor speed control,is proposed.Considering the inherent time-delay and external disturbances within the motor speed adjustment system,a two DOF(degree-of-freedom)Smith predictor with feedforward input is designed to track the target speed of the drive motor.The feedforward input is used to eliminate the influence of clutch sliding friction on the motor speed control,while the feedback speed tracking controller is applied to realize the speed tracking performance with the existence of time-delay and the external disturbance.In order to verify the effectiveness of the gear shift control strategy and the accuracy of the two DOF Smith controller with feedforward control,simulation results comparison is firstly carried out to illustrate the effectiveness of the control scheme.Then,a light pure electric vehicle equipped with I-AMT was used for downshift experiments under large throttle,which is the most difficult working scenario to control the transmission.The experimental results show that the two DOF Smith controller can eliminate the influence of time-delay on the closed-loop control,and the proposed whole gear shift control strategy can limit the clutch slippage time within 1.5 s,resulting in a smaller shift jerk,thus guarantee the driving dynamics and riding comfort simultaneously.
基金supported by the National Key R&D Program of China(No.2019YFB2001502)the National Natural Science Foundation of China(No.52075387)+2 种基金the Open Foundation of the State Key Laboratory of Fluid Power&Mechatronic Systems(No.GZKF-201907)the Shanghai Municipal Science and Technology Major Project(No.2021SHZDZX0100)the Shanghai Municipal Commission of Science and Technology Project(No.19511132101),China。
文摘The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components,especially annular damage on the contact area of the valve ball and on the valve seat of the spherical unloading valve in the high-pressure pump.In previous study,the authors have analyzed the damage on the unloading valve and demonstrated that it is caused neither by static damage nor fatigue damage and have put forward the hypothesis of fretting wear.This paper is based on the establishment of the statically indeterminate structure of the unloading valve.The micro friction parameters(stress,friction coefficient,etc.)required for the numerical iterative calculation of fretting wear are calculated.In addition,based on the grid adaptive technology and a modified Archard wear model,the fretting wear is calculated quantitatively and is in good agreement with experimental results.Based on that verification,the wear laws of the valve ball and valve seat under the same hardness,different contact angles,and different assembly stresses,are analyzed in detail,and reasoned suggestions for the structural design and assembly design of the ball valve are given.