Interfacial engineering has made an outstanding contribution to the development of high-efficiency perovskite solar cells(PSCs).Here,we introduce an effective interface passivation strategy via methoxysilane molecules...Interfacial engineering has made an outstanding contribution to the development of high-efficiency perovskite solar cells(PSCs).Here,we introduce an effective interface passivation strategy via methoxysilane molecules with different terminal groups.The power conversion efficiency(PCE)has increased from 20.97%to 21.97%after introducing a 3-isocyanatopropyltrimethoxy silane(IPTMS)molecule with carbonyl group,while a trimethoxy[3-(phenylamino)propyl]silane(PAPMS)molecule containing aniline group deteriorates the photovoltaic performance as a consequence of decreased open circuit voltage.The improved performance after IPTMS treatment is ascribed to the suppression of non-radiative recombination and enhancement of carrier transportation.In addition,the devices with carbonyl group modification exhibit outstanding thermal stability,which maintain 90%of its initial PCE after 1500 h exposure.This work provides a guideline for the design of passivation molecules aiming to deliver the efficiency and thermal stability simultaneously.展开更多
Single atom catalysts(SACs)with metal_(1)-N_(x)sites have shown promising activity and selectivity in direct catalytic oxidation of benzene to phenol.The reaction pathway is considered to be involving two steps,includ...Single atom catalysts(SACs)with metal_(1)-N_(x)sites have shown promising activity and selectivity in direct catalytic oxidation of benzene to phenol.The reaction pathway is considered to be involving two steps,including a H_(2)O_(2)molecule dissociated on the metal single site to form the(metal_(1)-N_(x))=O active site,and followed by the dissociation of another H_(2)O_(2)on the other side of metal atom to form O=(metal_(1)-N_(x))=O intermediate center,which is active for the adsorption of benzene molecule via the formation of a C-O bond to form phenol.In this manuscript,we report a Cu SAC with nitrogen and oxygen dual-coordination(Cu1-N3O1 moiety)that doesn’t need the first H_(2)O_(2)activation process,as verified by both experimental and density function theory(DFT)calculations results.Compared with the counterpart nitrogen-coordinated Cu SAC(denoted as Cu1/NC),Cu SAC with nitrogen and oxygen dual-coordination(denoted as Cu1/NOC)exhibits 2.5 times higher turnover frequency(TOF)and 1.6 times higher utilization efficiency of H_(2)O_(2).Particularly,the coordination number(CN)of Cu atom in Cu1/NOC maintains four even after H_(2)O_(2)treatment and reaction.Combining DFT calculations,the dynamic evolution of single atomic Cu with nitrogen and oxygen dualcoordination in hydroxylation of benzene is proposed.These findings provide an efficient route to improve the catalytic performance through regulating the coordination environments of SACs and demonstrate a new reaction mechanism in hydroxylation of benzene to phenol reaction.展开更多
The polarization control of light opens numerous explorations like information communication or three-dimensional displays.However,because the difference between number of left-handed and right-handed pho-tons in the ...The polarization control of light opens numerous explorations like information communication or three-dimensional displays.However,because the difference between number of left-handed and right-handed pho-tons in the free electromagnetic field is less than a per-cent,there is still a great challenge to measure the difference.展开更多
Interferometers are essential elements in classical and quantum optical systems.The strictly required stability when extracting the phase of photons is vulnerable to polarization variation and phase shift induced by e...Interferometers are essential elements in classical and quantum optical systems.The strictly required stability when extracting the phase of photons is vulnerable to polarization variation and phase shift induced by environment disturbance.Here,we implement polarization-insensitive interferometers by combining silica planar light-wave circuit chips and Faraday rotator mirrors.Two asymmetric interferometers with temperature controllers are connected in series to evaluate the single-photon interference.Average interference visibility over 12 h is above 99%,and the variations are less than 0.5%,even with active random polarization disturbance.The experiment results verify that the hybrid chip is available for high-demand applications like quantum key distribution and entanglement measurement.展开更多
Cross-boundary transport of air pollution is a difficult issue in pollution control for the North China Plain.In this study,an industrial district(Shahe City)with a large glass manufactur-ing sector was investigated t...Cross-boundary transport of air pollution is a difficult issue in pollution control for the North China Plain.In this study,an industrial district(Shahe City)with a large glass manufactur-ing sector was investigated to clarify the relative contribution of fine particulate matter(PM_(2.5))to the city's high levels of pollution.The Nest Air Quality Prediction Model System(NAQPMS),paired with Weather Research and Forecasting(WRF),was adopted and applied with a spatial resolution of 5 km.During the study period,the mean mass concentrations of PM_(2.5),SO_(2),and NO_(2)were observed to be 132.0,76.1,and 55.5μg/m^(3),respectively.The model reproduced the variations in pollutant concentrations in Shahe at an acceptable level.The simulation of online source-tagging revealed that pollutants emitted within a 50-km radius of downtown Shahe contributed 63.4%of the city's total PM_(2.5)concentration.This contribu-tion increased to 73.9±21.2%when unfavorable meteorological conditions(high relative hu-midity,weak wind,and low planetary boundary layer height)were present;such conditions are more frequently associated with severe pollution(PM_(2.5)≥250μg/m^(3)).The contribution from Shahe was 52.3±21.6%.The source apportionment results showed that industry(47%),transportation(10%),power(17%),and residential(26%)sectors were the most important sources of PM_(2.5)in Shahe.The glass factories(where chimney stack heights were normally<70 m)in Shahe contributed 32.1%of the total PM_(2.5)concentration in Shahe.With an in-crease in PM_(2.5)concentration,the emissions from glass factories accumulated vertically and narrowed horizontally.At times when pollution levels were severe,the horizontally influ-enced area mainly covered Shahe.Furthermore,sensitivity tests indicated that reducing emissions by 20%,40%,and 60% could lead to a decrease in themass concentration of PM_(2.5) of of 12.0%,23.8%,and 35.5%,respectively.展开更多
RNA viruses are critically dependent upon virally encoded proteases to cleave the viral polyproteins into functional proteins.Many of these proteases exhibit a similar fold and contain an essential catalytic cysteine,...RNA viruses are critically dependent upon virally encoded proteases to cleave the viral polyproteins into functional proteins.Many of these proteases exhibit a similar fold and contain an essential catalytic cysteine,offering the opportunity to inhibit these enzymes with electrophilic small molecules.Here we describe the successful application of quantitative irreversible tethering(qIT)to identify acrylamide fragments that target the active site cysteine of the 3C protease(3Cpro)of Enterovirus 71,the causative agent of hand,foot and mouth disease in humans,altering the substrate binding region.Further,we re-purpose these hits towards the main protease(Mpro)of SARS-CoV-2 which shares the 3C-like fold and a similar active site.The hit fragments covalently link to the catalytic cysteine of Mpro to inhibit its activity.We demonstrate that targeting the active site cysteine of Mpro can have profound allosteric effects,distorting secondary structures to disrupt the active dimeric unit.展开更多
基金The authors acknowledge funding support from National Natural Science Foundation of China(21975028,22011540377)National Science Foundation for Young Scientists No.21805010,Beijing Municipal Science and Technology Project No.Z181100005118002,and Beijing Municipal Natural Science Foundation(JQ19008).
文摘Interfacial engineering has made an outstanding contribution to the development of high-efficiency perovskite solar cells(PSCs).Here,we introduce an effective interface passivation strategy via methoxysilane molecules with different terminal groups.The power conversion efficiency(PCE)has increased from 20.97%to 21.97%after introducing a 3-isocyanatopropyltrimethoxy silane(IPTMS)molecule with carbonyl group,while a trimethoxy[3-(phenylamino)propyl]silane(PAPMS)molecule containing aniline group deteriorates the photovoltaic performance as a consequence of decreased open circuit voltage.The improved performance after IPTMS treatment is ascribed to the suppression of non-radiative recombination and enhancement of carrier transportation.In addition,the devices with carbonyl group modification exhibit outstanding thermal stability,which maintain 90%of its initial PCE after 1500 h exposure.This work provides a guideline for the design of passivation molecules aiming to deliver the efficiency and thermal stability simultaneously.
基金We thank the National Key R&D Program of China(Nos.2018YFA0703503 and 2018YFA0208504)the National Natural Science Foundation of China(No.21932006)the Youth Innovation Promotion Association of CAS(No.2017049)for financial support.
文摘Single atom catalysts(SACs)with metal_(1)-N_(x)sites have shown promising activity and selectivity in direct catalytic oxidation of benzene to phenol.The reaction pathway is considered to be involving two steps,including a H_(2)O_(2)molecule dissociated on the metal single site to form the(metal_(1)-N_(x))=O active site,and followed by the dissociation of another H_(2)O_(2)on the other side of metal atom to form O=(metal_(1)-N_(x))=O intermediate center,which is active for the adsorption of benzene molecule via the formation of a C-O bond to form phenol.In this manuscript,we report a Cu SAC with nitrogen and oxygen dual-coordination(Cu1-N3O1 moiety)that doesn’t need the first H_(2)O_(2)activation process,as verified by both experimental and density function theory(DFT)calculations results.Compared with the counterpart nitrogen-coordinated Cu SAC(denoted as Cu1/NC),Cu SAC with nitrogen and oxygen dual-coordination(denoted as Cu1/NOC)exhibits 2.5 times higher turnover frequency(TOF)and 1.6 times higher utilization efficiency of H_(2)O_(2).Particularly,the coordination number(CN)of Cu atom in Cu1/NOC maintains four even after H_(2)O_(2)treatment and reaction.Combining DFT calculations,the dynamic evolution of single atomic Cu with nitrogen and oxygen dualcoordination in hydroxylation of benzene is proposed.These findings provide an efficient route to improve the catalytic performance through regulating the coordination environments of SACs and demonstrate a new reaction mechanism in hydroxylation of benzene to phenol reaction.
文摘The polarization control of light opens numerous explorations like information communication or three-dimensional displays.However,because the difference between number of left-handed and right-handed pho-tons in the free electromagnetic field is less than a per-cent,there is still a great challenge to measure the difference.
基金National Natural Science Foundation of China(61627820,61622506,61822115)National Key Research and Development Program of China(2018YFA0306400)Anhui Initiative in Quantum Information Technologies(AHY030000)。
文摘Interferometers are essential elements in classical and quantum optical systems.The strictly required stability when extracting the phase of photons is vulnerable to polarization variation and phase shift induced by environment disturbance.Here,we implement polarization-insensitive interferometers by combining silica planar light-wave circuit chips and Faraday rotator mirrors.Two asymmetric interferometers with temperature controllers are connected in series to evaluate the single-photon interference.Average interference visibility over 12 h is above 99%,and the variations are less than 0.5%,even with active random polarization disturbance.The experiment results verify that the hybrid chip is available for high-demand applications like quantum key distribution and entanglement measurement.
基金This work was supported by the National Key R&D Program of China(Grant 2017YFC0209904)National Natural Science Foundation of China(Grant 41877314)。
文摘Cross-boundary transport of air pollution is a difficult issue in pollution control for the North China Plain.In this study,an industrial district(Shahe City)with a large glass manufactur-ing sector was investigated to clarify the relative contribution of fine particulate matter(PM_(2.5))to the city's high levels of pollution.The Nest Air Quality Prediction Model System(NAQPMS),paired with Weather Research and Forecasting(WRF),was adopted and applied with a spatial resolution of 5 km.During the study period,the mean mass concentrations of PM_(2.5),SO_(2),and NO_(2)were observed to be 132.0,76.1,and 55.5μg/m^(3),respectively.The model reproduced the variations in pollutant concentrations in Shahe at an acceptable level.The simulation of online source-tagging revealed that pollutants emitted within a 50-km radius of downtown Shahe contributed 63.4%of the city's total PM_(2.5)concentration.This contribu-tion increased to 73.9±21.2%when unfavorable meteorological conditions(high relative hu-midity,weak wind,and low planetary boundary layer height)were present;such conditions are more frequently associated with severe pollution(PM_(2.5)≥250μg/m^(3)).The contribution from Shahe was 52.3±21.6%.The source apportionment results showed that industry(47%),transportation(10%),power(17%),and residential(26%)sectors were the most important sources of PM_(2.5)in Shahe.The glass factories(where chimney stack heights were normally<70 m)in Shahe contributed 32.1%of the total PM_(2.5)concentration in Shahe.With an in-crease in PM_(2.5)concentration,the emissions from glass factories accumulated vertically and narrowed horizontally.At times when pollution levels were severe,the horizontally influ-enced area mainly covered Shahe.Furthermore,sensitivity tests indicated that reducing emissions by 20%,40%,and 60% could lead to a decrease in themass concentration of PM_(2.5) of of 12.0%,23.8%,and 35.5%,respectively.
基金supported by grants from Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2021-I2M-1-037, China)National Key Research and Development Program of China (2016YFD0500300)+5 种基金the CRP-ICGEB Research Grant 2019 (CRP/CHN19-02, China)supported by grants from the Institute of Chemical Biology (Imperial College London, UK)the UK Engineering and Physical Sciences Research Council (Studentship award EP/F500416/1, UK)The Imperial College COVID19 Research FundThe crystallization facility at Imperial College was funded by BBSRC (BB/ D524840/1, UK)the Wellcome Trust (202926/Z/16/Z, UK)
文摘RNA viruses are critically dependent upon virally encoded proteases to cleave the viral polyproteins into functional proteins.Many of these proteases exhibit a similar fold and contain an essential catalytic cysteine,offering the opportunity to inhibit these enzymes with electrophilic small molecules.Here we describe the successful application of quantitative irreversible tethering(qIT)to identify acrylamide fragments that target the active site cysteine of the 3C protease(3Cpro)of Enterovirus 71,the causative agent of hand,foot and mouth disease in humans,altering the substrate binding region.Further,we re-purpose these hits towards the main protease(Mpro)of SARS-CoV-2 which shares the 3C-like fold and a similar active site.The hit fragments covalently link to the catalytic cysteine of Mpro to inhibit its activity.We demonstrate that targeting the active site cysteine of Mpro can have profound allosteric effects,distorting secondary structures to disrupt the active dimeric unit.