Canada’s boreal forest represents an important contributor of the world’s wood supply industry. However,maintaining or increasing productivity of the boreal forest may be challenging in areas dominated by forested p...Canada’s boreal forest represents an important contributor of the world’s wood supply industry. However,maintaining or increasing productivity of the boreal forest may be challenging in areas dominated by forested peatlands. Moreover, sustainable management of these forests must also consider other important aspects of the forest ecosystem such as biodiversity and carbon sequestration. To address these concerns, ecosystem-based management has been implemented in some Canadian jurisdictions, such as in regions where a large portion of the boreal forest is dominated by forested peatlands. The objectives of this paper are(1) to summarize our current understanding of how natural disturbances influence stand dynamics and biodiversity in forested peatlands, and(2) to review the main differences between natural and managed forest stands with respect to soil properties, stand productivity, understory plant communities. We also discuss how even-age management regime succeeds or fails to preserve old forests and how this loss affects both forest structure and habitat diversity at the landscape level.We conclude by showing how, in boreal forested peatlands, forest management could contribute to carbon sequestration and mitigate projected climate change.展开更多
For most of their energy requirements, greater part of remote communities and small islands around the world rely on imported fossil fuels. The economical cost of energy is therefore very high not only due to inherent...For most of their energy requirements, greater part of remote communities and small islands around the world rely on imported fossil fuels. The economical cost of energy is therefore very high not only due to inherent cost of fuel, but also due to transportation and due to maintenance costs. One solution for saving fuel in a diesel generator is to allow the engine to operate directly in relation to the request for electrical load at variable speeds. Genset-Synchro Technology has developed an innovative variable speed?generator technology (patent pending) that allows applications where power demand varies widely to benefit from the new technology that maintains constant voltage and frequency while adjusting the generator stator speed to power demand. This paper will present an innovative approach for optimizing the energy production based from the fact that the structure that contains the stator windings of the generator is mounted on roller bearings, which allows its free rotation around the axis of the rotor, consequently stopping the stator structure from being static and aims to minimize the unit cost of electricity. Case study on application in remote area in the north of Quebec is described. A saving of 7%?-?9% on fuel consumption and greenhouse gas (GHG) under low winter ambient temperatures has been registered.展开更多
The maritime industry is currently facing the challenges of adopting new technologies and operational practices with stricter international, national and local rules in order to reduce exhaust gas emissions from ships...The maritime industry is currently facing the challenges of adopting new technologies and operational practices with stricter international, national and local rules in order to reduce exhaust gas emissions from ships. The most objective of regulations introduced and presented by the Worldwide Sea Organization such as International Maritime Organization (IMO) and the US Environmental Protection Agency (EPA) is to lessen the commitment shipping makes to worldwide and local discharges. This paper analyzes emissions from marine engines and the process of waste exhaust gas formation and provides a summary of the emission reduction technologies to satisfy MARPOL NOx tier III and EPA tier IV rules. The results showed the possibility of achieving a valuable emission reduction percentage if future diesel engines are equipped with pre-treatment, internal-treatment and/or post-treatment techniques. Economics impact for medium and low speed for category 3 marine diesel engines is also presented.展开更多
Lichen woodlands (LW) located in the closed-crown boreal forest are not a successional stage moving towards a closed black spruce feathermoss stand (FM), but an alternative stable state, due to their previous forest h...Lichen woodlands (LW) located in the closed-crown boreal forest are not a successional stage moving towards a closed black spruce feathermoss stand (FM), but an alternative stable state, due to their previous forest history, and the occurrence of LWs located nearby closed-crown FM stands. Therefore, afforestation in those LWs through site preparation and plantation could shift back LW into FM stands. We implemented an experimental design with different combinations of silvicultural treatments in both site types (LW, FM). We monitored the evolution of plant diversity and the physiology of three bio-indicators (Picea mariana, Kalmia angustifolia, Rhododendron groenlandicum) in different microsites created by the silvicultural treatments. The return to the initial composition was noticed only two years after treatments, especially in the LW stands, thus indicating a higher level of early ecosystem resilience in LWs compared to FM stands. Mean species cover, especially in the FM stands, decreased the most in the skid trails created by logging, probably due to a lack of acclimation of bryophytes to open stand conditions. Conversely, ericaceous shrubs and lichens found in the LWs were already acclimated to open stand conditions, which give to LWs a restructuring advantage compared to FM plant communities after silvicultural treatments. Overall, FM and LW short-term resilience was similar, indicating equally efficient ecosystem reorganization in both stands. The comparable early resilience in managed LW and FM stands, in terms of plant biodiversity, contradicts the presumed fragility of LW stands, especially in this case where LWs are assumed to be an alternative stable state created by compound disturbances. Silvicultural treatments maintained the functional group diversity in LWs, a key element for ecosystem resilience. Therefore, this study support the idea that plantation following site preparation in LWs could be a valuable management strategy to reach several objectives, such as increasing forest carbon sinks.展开更多
The photochemical mineralization of dissolved organic carbon(DOC) to dissolved inorganic carbon(DIC) is a key process in carbon cycling.Using a Suntest CPS solar simulator,Suwannee River humic acid(SRHA) was photooxid...The photochemical mineralization of dissolved organic carbon(DOC) to dissolved inorganic carbon(DIC) is a key process in carbon cycling.Using a Suntest CPS solar simulator,Suwannee River humic acid(SRHA) was photooxidated to examine the effects of O2 levels,the wavelength of incident light,and the concentration of Fe on the photoproduction of DIC.Increasing the O2 abundance enhanced photodegradation of SRHA.The rate of DIC photoproduction under air saturation in the first 24 h(4.40 μmol/(L h)) was increased by a factor of 1.56 under O2 saturation,but fell by only 36% under N2 saturation.To evaluate the relative importance of UV-B,UV-A,and visible radiation in the photodegradation,we examined the above process using Mylar-d films and UF-3 and UF-4 plexiglass filters.The results indicated that the UV-B,UV-A and visible wavelengths accounted for 31.8%,32.6% and 25.6%,respectively,of DIC production with simulated sunlight irradiation.The above results also indicated that photoproduction of DIC could take place in natural water at depths greater than those that UV light can reach.When 20 μmol/L desferrioxamine mesylate(DFOM,a strong Fe complexing ligand) was added,the rate of DIC photoproduction fell to 55.6% that of the original SRHA samples with 5.46 μmol/L Fe.展开更多
Interest in phenotypic flexibility has increased dramatically over the last decade, but flexibility during reproduction has received relatively little attention from avian scientists, despite its possible impact on fi...Interest in phenotypic flexibility has increased dramatically over the last decade, but flexibility during reproduction has received relatively little attention from avian scientists, despite its possible impact on fitness. Because most avian species maintain atrophied reproductive organs when not active, reproduction in birds requires major tissue remodeling in preparation for breeding. Females undergo rapid (days) recrudescence and regression of their reproductive organs at each breeding attempt, while males grow their organs ahead of time at a much slower rate (weeks) and may maintain them at maximal size throughout the breeding season. Reproduction is associated with significant metabolic costs. Egg production leads to a 22%-27% increase in resting metabolic rate (RMR) over non-reproductive values. This is partly due to the activity of the oviduct, an organ that may allow females to adjust reproductive investment by modulating egg size and quality. In males, gonadal recrudescence may lead to a 30% increase in RMR, but the data are inconsistent and general conclusions regarding energetic costs of reproduction in males will require more research. Recent studies on captive female zebra finches describe the impacts of these costs on daily energy budgets and highlight the strategies used by birds to maintain their investment in reproduction when energy is limited. Whenever possible, birds use behavioral flexibility as a first means of saving energy. Decreasing locomotor activity saves energy during challenges such as egg production or exposure to cold temperatures and is an efficient way to buffer variation in individual daily energy budgets. However, when behavioral flexibility is not possible, birds must rely on flexibility at the physiological level to meet energy demands. In zebra finches breeding in the cold, this results in a reduced pace of laying, likely due to down-regulation of both reproductive and non-reproductive function, allowing females to defend minimal egg size and maintain reproductive success. More research involving a range of species in captive and flee-living conditions is needed to determine how phenotypic flexibility during tissue remodeling and early reproductive investment translates to natural conditions and affects fitness [Current Zoology 56 (6): 767-792, 2010].展开更多
We have used a nonlinear one-dimensional heat transfer model based on temperature-dependent blood perfusion to predict temperature distribution in dermis and subcutaneous tissues subjected to point heating sources. By...We have used a nonlinear one-dimensional heat transfer model based on temperature-dependent blood perfusion to predict temperature distribution in dermis and subcutaneous tissues subjected to point heating sources. By using Jacobi elliptic functions, we have first found the analytic solution corresponding to the steady-state temperature distribution in the tissue. With the obtained analytic steady-state temperature, the effects of the thermal conductivity, the blood perfusion, the metabolic heat generation, and the coefficient of heat transfer on the temperature distribution in living tissues are numerically analyzed. Our results show that the derived analytic steady-state temperature is useful to easily and accurately study the thermal behavior of the biological system, and can be extended to such applications as parameter measurement, temperature field reconstruction and clinical treatment.展开更多
This paper deals with the production-dependent failure rates for a hybrid manufacturing/remanufacturing system subject to random failures and repairs. The failure rate of the manufacturing machine depends on its produ...This paper deals with the production-dependent failure rates for a hybrid manufacturing/remanufacturing system subject to random failures and repairs. The failure rate of the manufacturing machine depends on its production rate, while the failure rate of the remanufacturing machine is constant. In the proposed model, the manufacturing machine is characterized by a higher production rate. The machines produce one type of final product and unmet demand is backlogged. At the expected end of their usage, products are collected from the market and kept in recoverable inventory for future remanufacturing, or disposed of. The objective of the system is to find the production rates of the manufacturing and the remanufacturing machines that would minimize a discounted overall cost consisting of serviceable inventory cost, backlog cost and holding cost for returns. A computational algorithm, based on numerical methods, is used for solving the optimality conditions obtained from the application of the stochastic dynamic programming approach. Finally, a numerical example and sensitivity analyses are presented to illustrate the usefulness of the proposed approach. Our results clearly show that the optimal control policy of the system is obtained when the failure rates of the machine depend on its production rate.展开更多
Dust collection systems represent a significant portion of a wood product manufacturer’s total electricity use. The system fan works against the static pressure of the entire system—the blast gates, the ductwork, an...Dust collection systems represent a significant portion of a wood product manufacturer’s total electricity use. The system fan works against the static pressure of the entire system—the blast gates, the ductwork, and the upstream or downstream cyclone and/or baghouse. A poor system design (e.g., sharp elbows or undersized ductwork) increases the total amount of static pressure in the system, the fan’s performance curve shifts, increasing the total brake horsepower required by the fan (up to the maximum point on the curve). Additionally, system designers may oversize a dust collection system to ensure adequate dust capture and transport, either to accommodate system expansion or simply to be conservative. Since theoretical fan energy use increases with its velocity cubed, this can be an expensive safety net. This paper presents a comprehensive literature review about industrial cyclone dust collectors energy saving in relation to management, technologies, and policies. Energy-saving technologies like high-efficiency motors (HEMs), variable-speed drives (VSDs), leak detection, and pressure drop reduction have all been examined. Based on energy saving technologies results, it has been found that in the industrial sectors, a sizeable amount of electric energy, and utility bill can be saved using these technologies. Finally, various energy-saving policies were reviewed.展开更多
In this article we hypothesized that the arrow of time and space evolve in a discontinuous way in the form of quanta (<i>t</i>=<i>nt<sub>p</sub></i>, <i>s=ml<sub>p</s...In this article we hypothesized that the arrow of time and space evolve in a discontinuous way in the form of quanta (<i>t</i>=<i>nt<sub>p</sub></i>, <i>s=ml<sub>p</sub></i>). We applied this reasoning to the light geodesics of Schwarzschild’s metric (d<i>s</i><sub>min</sub>=<i>l<sub>p</sub></i>) and obtained different characteristics of the BH. Indeed, quantum light geodesics show that inside the BH a WH is formed and the mass (energy) is not directing towards the singularity <i>r</i>→0 but rather around the BH near the EH as a thick skin (tickness <img src="Edit_ff6adb16-d005-4998-8a9c-badd521800d3.png" width="18" height="25" alt="" />). The total relativistic energy invariant is satisfied for the entire route of the photons. Subsequently, as mass (energy) is found directly at the EH, we applied the quantum tunnel effect in simple semi-classical analysis, and we obtained that particles like protons can leave the EH and that the energy associated with them is in the order of magnitude of Hawking’s radiation. However, the energy of the protons is not necessarily identified with that of the black body (photonic or electromagnetic). Finally, it would be interesting to see the impacts of this quantum light geodesics (d<i>s</i><sub>min</sub>=<i>l<sub>p</sub></i>) on other cases like Kerr’s metric.展开更多
Background:Black spruce(Picea mariana(Mill.)BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation,known as the paludification process,has been shown to induce forest grow...Background:Black spruce(Picea mariana(Mill.)BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation,known as the paludification process,has been shown to induce forest growth decline.The continuously evolving environmental conditions(e.g.,water table rise,increasing peat thickness)in paludified forests may require tree growth mechanism adjustments over time.In this study,we investigate tree ecophysiological mechanisms along a paludification gradient in a boreal forested peatland of eastern Canada by combining peat-based and tree-ring analyses.Carbon and oxygen stable isotopes in tree rings are used to document changes in carbon assimilation rates,stomatal conductance,and water use efficiency.In addition,paleohydrological analyses are performed to evaluate the dynamical ecophysiological adjustments of black spruce trees to site-specific water table variations.Results:Increasing peat accumulation considerably impacts forest growth,but no significant differences in tree water use efficiency(iWUE)are found between the study sites.Tree-ring isotopic analysis indicates no iWUE decrease over the last 100 years,but rather an important increase at each site up to the 1980 s,before iWUE stabilized.Surprisingly,inferred basal area increments do not reflect such trends.Therefore,iWUE variations do not reflect tree ecophysiological adjustments required by changes in growing conditions.Local water table variations induce no changes in ecophysiological mechanisms,but a synchronous shift in iWUE is observed at all sites in the mid-1980 s.Conclusions:Our study shows that paludification induces black spruce growth decline without altering tree water use efficiency in boreal forested peatlands.These findings highlight that failing to account for paludification-related carbon use and allocation could result in the overestimation of aboveground biomass production in paludified sites.Further research on carbon allocation strategies is of utmost importance to understand the carbon sink capacity of these widespread ecosystems in the context of climate change,and to make appropriate forest management decisions in the boreal biome.展开更多
Background:Tree-related microhabitats(hereafter,"TreMs")are key components of forest biodiversity but they are still poorly known in North American hardwood forests.The spatial patterns of living trees beari...Background:Tree-related microhabitats(hereafter,"TreMs")are key components of forest biodiversity but they are still poorly known in North American hardwood forests.The spatial patterns of living trees bearing TreMs(hereafter,"TreM-trees")also remain to be determined.As logging practices can lead to a loss of TreM-trees and of their associated biodiversity,it is essential to identify the factors explaining TreM occurrence to better integrate them into forest management.We therefore inventoried TreMs in 40.5-ha survey strips in northern hardwood forests in Quebec,Canada,while recording the spatial location of each tree.Two strips were located in unmanaged oldgrowth forests,and 2 were in forests managed under selection cutting.All 4 stands were dominated by sugar maple(Acer saccharum Marsh.)and American beech(Fagus grandifolia Ehrn.).Beech bark disease,an exotic pathology,was observed in all the strips.Results:Large diameter at breast height and low tree vigor were the main characteristics explaining the presence of TreMs at the tree scale.TreM-trees presented slight spatial aggregation patterns.These aggregates,however,were not well-defined and were generally constituted by a large number of trees bearing few different types of TreMs.Two TreM classes(broken branch or top and woodpecker lodge)also presented a spatial aggregation.Logging practices had no significant effect on TreM occurrence.Beech bark disease increased the frequency of senescent beeches.The impact of this pathology on TreMs was however mitigated by the small size of infected trees and probably by the short time elapsed since its appearance.Conclusion:The factors explaining the presence and abundance of TreMs on trees has so far been little studied in North American hardwood forests.Our results highlight that TreM-tree characteristics in the surveyed forests are consistent with those of previous studies conducted in other forest types and regions(e.g.,Europe or Northwestern America).To our knowledge,this study is also the first to identify a spatial aggregation of TreM-trees and of specific TreM classes.It will be nevertheless necessary to determine whether the small impact of logging activities we observed results from current or past management practices.展开更多
With a world growing in population and nutritional needs, diatoms are considered nowadays as microalgae of a very important potential, thus they are exploited in several fields such as ecology, aquaculture, molecular ...With a world growing in population and nutritional needs, diatoms are considered nowadays as microalgae of a very important potential, thus they are exploited in several fields such as ecology, aquaculture, molecular farming, and pharma nutraceuticals. These coveted microalgae are characterized by their diversity, their high division rates, their complex life cycle, likewise their silicified cell walls named frustules. Thus, diatoms have been used for over a century after proving an efficient production of several molecules including Triacylglycerols (TAGs), H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, free fatty acids, vitamins, nutraceuticals, amino acids, proteins, terpenoids, alcohols and carbohydrates like starch, glycogen, and sucrose. </span><i><span style="font-family:Verdana;">Phaeodactylum tricornutum</span></i><span style="font-family:Verdana;"> is the most promising diatom exploited to date, especially as a platform of pharmaceutical production. Herein, we expose diatoms’ main features that allowed using them for molecular </span><span style="font-family:Verdana;">farming. This review exposes likewise, the metabolism and the post-translational </span><span style="font-family:Verdana;">modifications (PTMs) of diatoms as well as current tools and challenges for their molecular and metabolic engineering for a more efficient production of valuable molecules. The knowledge on the biology of the diatoms, the molecular tools, and the various transformation methods available demonstrate the potential in biotechnology of these photosynthetic microorganisms. The widely studied </span><i><span style="font-family:Verdana;">P. tricornutum</span></i><span style="font-family:Verdana;">, as a model organism, is a promising diatom for production of valuable metabolites, despite the challenges and issues related to cultivation.展开更多
The goal of this study was to determine the short-term effects of the quality (UV-A/UV-B ratio) and quantity (irradiance) of natural ultraviolet radiation (UVR) on the apoptosis levels in Yellow perch (Perca flavescen...The goal of this study was to determine the short-term effects of the quality (UV-A/UV-B ratio) and quantity (irradiance) of natural ultraviolet radiation (UVR) on the apoptosis levels in Yellow perch (Perca flavescens) larvae. Apoptosis, or programmed cell death, is an essential event in many physiological processes as well as in pathological conditions. Western blots were used to measure the expression of several key proteins of the apoptotic cascade, such as p53, Bax, Bcl-2, and PARP-1, whereas specific apoptotic DNA fragmentation was measured by an ELISA assay. We predicted that higher UVR exposure would be related to higher levels of apoptosis. Our results showed that specific apoptotic DNA fragmentation was reduced by visible light + UV-A as well as by visible light + UV-A and UV-B treatments although it was not significantly affected by light quantity. However, the expression of p53, Bax/Bcl-2 ratio and PARP-1 were not significantly affected in larvae by the quantity or the quality of the light after two days of exposure. Altogether our results suggest that UVR may modulate the apoptotic process in Yellow perch larvae proposing an interesting role for this stressor on the early development of living organism under natural exposure condition.展开更多
The wood polysaccharide composition, a new analytical method, based on ionic liquid dissolution of low amount of biomass coupled with an ELISA essay of polysaccharides. In the present work, we synthesized and tested s...The wood polysaccharide composition, a new analytical method, based on ionic liquid dissolution of low amount of biomass coupled with an ELISA essay of polysaccharides. In the present work, we synthesized and tested several imidazolium and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) based ILs for their ability to solubilize Douglas-fir wood while preserving the wall polymer integrity. The couple times-temperatures have been essayed for wood dissolution. Then their efficiency for wood biomass dissolution was compared to the impact of IL on storing and/or destroy polysaccharides. Thanks to the ELISA technique with a set of mAbs against epitopes of the main hemicellulose, pectin, and protein families of cell wall components. Wood destructuration at 80˚C with the 1-ethyl-3-methylimidazolium bromide represents a good compromise of wood dissolution efficiency and low polysaccharide destruction.展开更多
Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SE...Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SEM analyses revealed that the surface of the film did not exhibit cracks in the presence of TTIP as a binder in the TiO2 P25 suspension. The following parameters were studied in continuous mode operation: the flow rate in the reactor, the initial concentration of the paraquat, the pH of the solution, the weight of photocatalytic material with the number of foams in the reactor and the weight of the catalyst deposited onto the support. The results showed that by working under optimal operating conditions at natural pH (pH = 6.7), low paraquat (Co = 10 ppm), and flow (26 mL/min), we recorded approximately (43.16 ± 1.00)% oxidation of paraquat and a decrease in total organic carbon (TOC) of (27.13 ± 1.00)% after about 70 minutes. The apparent rate constant is in the order of (0.0656 ± 0.0010) min-1. In addition, by increasing the amount of β-SiC foams coated with TiO2, we improve the degradation of paraquat in the same order. The study of aging of the material showed its stability over time. However, photocatalytic activity was limited after 20 minutes of UV irradiation due to the limitation of the diffusion of the paraquat molecules towards the surface of the photocatalyst. As an outcome, we obtained an efficient TiO2/β-SiC material for photocatalytic degradation of organic compounds in water.展开更多
In most developing countries, particularly in the countries of sub-Saharan Africa, corn cobs are considered as waste polluting the environment during the harvest period of this cereal. In order to valorize this agricu...In most developing countries, particularly in the countries of sub-Saharan Africa, corn cobs are considered as waste polluting the environment during the harvest period of this cereal. In order to valorize this agricultural waste, high-performance, inexpensive and low-energy consumption magnetic bioadsorbents were prepared from corn cobs. The chemically activated raw corn cob was magnetized by coating the surface with magnetite nanoparticles. The prepared biosorbents were characterized by FT-IR, XRD, FE-SEM associated with EDX, HR-TEM, TG analysis, BET surface area analysis and XPS. The maximum specific surface area of 35.22 m<sup>2</sup>/g was reached. An attempt to use of these magnetic biosorbents for the removal of heavy metal like Cr(VI) from aqueous solution was envisaged.展开更多
Residues of pharmaceutical and direct metabolites discharged into the aquatic environment have become a challenge for wastewater treatment facilities due to their increase in concentration and their different physicoc...Residues of pharmaceutical and direct metabolites discharged into the aquatic environment have become a challenge for wastewater treatment facilities due to their increase in concentration and their different physicochemical properties. These emerging contaminants are daily detected in surface water and wastewater discharged by municipalities. To remediate the contaminated water, various methods are currently used including primary, secondary, and tertiary advanced treatments. However, some economic and environmental limitations have forced the scientific community to develop alternative disinfection processes to purify wastewater. As such, the adsorption strategy represents a “green” low-cost and effective solution to remove pollutants from water. In this study, a nanomaterial made of N,O-carboxymethyl chitosan (N,O-CMCS) was prepared using chitosan (CS) and monochloroacetic acid under various conditions. N,O-CMCS electrospun was synthetized with the copolymer polyethylene oxide (PEO) to create nanofiber membranes showing a better specificity toward diversified contaminants depending on the pH of medium. The developed adsorbent was used to remove fluoxetine (FLX) from aqueous solutions. The new nanomaterial was characterised using FTIR, NMR, and SEM techniques. Sorption batch tests were carried out using high-performance liquid chromatography and ultraviolet diode array detector (HPLC-UV DAD) under controlled pH experimental conditions to determine the contaminant removal capacity of the nanomaterial. The promising adsorption results obtained with N,O-CMCS/PEO nanofibers are among the best ones obtained so far in comparison to other commercial and synthetized adsorbents tested for FLX’s adsorption. Kinetic experiments were also performed to investigate effects of contact times on the FLX adsorption. Experimental results were fitted to both common kinetic models pseudo-first and second order. The latter kinetic model described the best the sorption on surface. It revealed a possible chemisorption mechanism with electrostatic bounding for N,O-CMCS/PEO nanofibers.展开更多
In this study, the authors characterized the raw clayey soil of Moukosso and modified by dimethylsulfoxide (DMSO) by several analytical methods, namely: X-ray diffraction (XRD), Fourier transform infrared (FTIR) and g...In this study, the authors characterized the raw clayey soil of Moukosso and modified by dimethylsulfoxide (DMSO) by several analytical methods, namely: X-ray diffraction (XRD), Fourier transform infrared (FTIR) and gravimetric thermal analysis (TGA). The cation exchange capacity (CEC) was also determined. Mineralogical analysis by XRD revealed the presence of muscovite (29.7%), kaolinite (8.9%), anatase (2.4%) and quartz (58.9%). The characterization of the organo-clay by infrared and by thermogravimetric analysis confirmed the intercalation of DMSO by the presence of vibration bands at 1008 cm<sup>-1</sup> and 1070 cm<sup>-1</sup> and a strong increase in the loss of mass. The cation exchange capacity of the raw material is 7.4 meq/100g. Rapid adsorption of Pb<sup>2+</sup> ions was observed between 5 and 15 minutes of stirring time in both cases (raw clay and organomodified clay). The modeling of the isotherms by the models of Langmuir and Freudlich showed that these are of type S with a maximum amount of adsorption of 22.471 mg/g for the fine fraction and 41.493 mg/g for the clay intercalated with DMSO. Langmuir’s model best reproduces the experimental data of this study.展开更多
This idea of quantifying the energy of bodies orbiting the Sun is not new. We have identified that quantization applies well if we use the true quantum number associated with the true energy state of rotating bodies. ...This idea of quantifying the energy of bodies orbiting the Sun is not new. We have identified that quantization applies well if we use the true quantum number associated with the true energy state of rotating bodies. This quantum number is very high for the main bodies or planets (10<sup>~70 to 76</sup>). However, since quantum energy levels E are very high and ΔE very low we observe that bodies can in practice occupy all orbits. Thus, the current observed stable positions of the bodies are the results of the quantization and the sum of the effects of other perturbative phenomena. To find a quantum state starting with n = 1, we expressed the true integer quantum numbers as a function of that of the planet Mercury and we find an excellent correlation. However, the search for a correlation of prediction of the average orbital radius of bodies using the simple integer number n = 1, 2, 3, 4, 5, 6, 7, … is not excellent for bodies beyond the planet Pluto. Indeed, several trans-Neptunian bodies have similar integer quantum numbers, which poses a problem in the sequence of integer numbers beyond 10. Moreover, it appears that the trans-Neptunian bodies seem to be grouped for many of them according to relatively well-defined bands. The study made it possible to question the de Broglie wavelength of bodies (10<sup>~-58 to -65</sup> m). Indeed, with the hypothesis of Planck quantities that would apply to the scale of the universe, it is difficult to conceive that de Broglie wavelengths are less than the Planck length l<sub>p</sub>. This led to an expression of the modified de Broglie wavelength λ<sub>m</sub> that predicts an asymptotic lower limit value equal to πl<sub>p</sub>. This modified de Broglie wavelength makes it possible to obtain a better correlation for the prediction of the average orbital radius of bodies. Finally, this modified wavelength of de Broglie made it possible to put into perspective the concept of the quantification of space with the idea of the minimum wavelength associated with photon’s energies during the generation of the energy of the universe according to a model already presented in this review. This modified de Broglie wavelength also makes it possible to imagine that the quantification of the volume of space involves the geometry of the sphere and the cube.展开更多
文摘Canada’s boreal forest represents an important contributor of the world’s wood supply industry. However,maintaining or increasing productivity of the boreal forest may be challenging in areas dominated by forested peatlands. Moreover, sustainable management of these forests must also consider other important aspects of the forest ecosystem such as biodiversity and carbon sequestration. To address these concerns, ecosystem-based management has been implemented in some Canadian jurisdictions, such as in regions where a large portion of the boreal forest is dominated by forested peatlands. The objectives of this paper are(1) to summarize our current understanding of how natural disturbances influence stand dynamics and biodiversity in forested peatlands, and(2) to review the main differences between natural and managed forest stands with respect to soil properties, stand productivity, understory plant communities. We also discuss how even-age management regime succeeds or fails to preserve old forests and how this loss affects both forest structure and habitat diversity at the landscape level.We conclude by showing how, in boreal forested peatlands, forest management could contribute to carbon sequestration and mitigate projected climate change.
文摘For most of their energy requirements, greater part of remote communities and small islands around the world rely on imported fossil fuels. The economical cost of energy is therefore very high not only due to inherent cost of fuel, but also due to transportation and due to maintenance costs. One solution for saving fuel in a diesel generator is to allow the engine to operate directly in relation to the request for electrical load at variable speeds. Genset-Synchro Technology has developed an innovative variable speed?generator technology (patent pending) that allows applications where power demand varies widely to benefit from the new technology that maintains constant voltage and frequency while adjusting the generator stator speed to power demand. This paper will present an innovative approach for optimizing the energy production based from the fact that the structure that contains the stator windings of the generator is mounted on roller bearings, which allows its free rotation around the axis of the rotor, consequently stopping the stator structure from being static and aims to minimize the unit cost of electricity. Case study on application in remote area in the north of Quebec is described. A saving of 7%?-?9% on fuel consumption and greenhouse gas (GHG) under low winter ambient temperatures has been registered.
文摘The maritime industry is currently facing the challenges of adopting new technologies and operational practices with stricter international, national and local rules in order to reduce exhaust gas emissions from ships. The most objective of regulations introduced and presented by the Worldwide Sea Organization such as International Maritime Organization (IMO) and the US Environmental Protection Agency (EPA) is to lessen the commitment shipping makes to worldwide and local discharges. This paper analyzes emissions from marine engines and the process of waste exhaust gas formation and provides a summary of the emission reduction technologies to satisfy MARPOL NOx tier III and EPA tier IV rules. The results showed the possibility of achieving a valuable emission reduction percentage if future diesel engines are equipped with pre-treatment, internal-treatment and/or post-treatment techniques. Economics impact for medium and low speed for category 3 marine diesel engines is also presented.
基金funded by a Fonds de Recherche pour la Nature et des Technologies du Gouvernement du Québec(FQRNT)grant to D.Lord,and the Carbone boréal project.
文摘Lichen woodlands (LW) located in the closed-crown boreal forest are not a successional stage moving towards a closed black spruce feathermoss stand (FM), but an alternative stable state, due to their previous forest history, and the occurrence of LWs located nearby closed-crown FM stands. Therefore, afforestation in those LWs through site preparation and plantation could shift back LW into FM stands. We implemented an experimental design with different combinations of silvicultural treatments in both site types (LW, FM). We monitored the evolution of plant diversity and the physiology of three bio-indicators (Picea mariana, Kalmia angustifolia, Rhododendron groenlandicum) in different microsites created by the silvicultural treatments. The return to the initial composition was noticed only two years after treatments, especially in the LW stands, thus indicating a higher level of early ecosystem resilience in LWs compared to FM stands. Mean species cover, especially in the FM stands, decreased the most in the skid trails created by logging, probably due to a lack of acclimation of bryophytes to open stand conditions. Conversely, ericaceous shrubs and lichens found in the LWs were already acclimated to open stand conditions, which give to LWs a restructuring advantage compared to FM plant communities after silvicultural treatments. Overall, FM and LW short-term resilience was similar, indicating equally efficient ecosystem reorganization in both stands. The comparable early resilience in managed LW and FM stands, in terms of plant biodiversity, contradicts the presumed fragility of LW stands, especially in this case where LWs are assumed to be an alternative stable state created by compound disturbances. Silvicultural treatments maintained the functional group diversity in LWs, a key element for ecosystem resilience. Therefore, this study support the idea that plantation following site preparation in LWs could be a valuable management strategy to reach several objectives, such as increasing forest carbon sinks.
基金Supported by the National Science and Engineering Research Committee of Canada (No213327)
文摘The photochemical mineralization of dissolved organic carbon(DOC) to dissolved inorganic carbon(DIC) is a key process in carbon cycling.Using a Suntest CPS solar simulator,Suwannee River humic acid(SRHA) was photooxidated to examine the effects of O2 levels,the wavelength of incident light,and the concentration of Fe on the photoproduction of DIC.Increasing the O2 abundance enhanced photodegradation of SRHA.The rate of DIC photoproduction under air saturation in the first 24 h(4.40 μmol/(L h)) was increased by a factor of 1.56 under O2 saturation,but fell by only 36% under N2 saturation.To evaluate the relative importance of UV-B,UV-A,and visible radiation in the photodegradation,we examined the above process using Mylar-d films and UF-3 and UF-4 plexiglass filters.The results indicated that the UV-B,UV-A and visible wavelengths accounted for 31.8%,32.6% and 25.6%,respectively,of DIC production with simulated sunlight irradiation.The above results also indicated that photoproduction of DIC could take place in natural water at depths greater than those that UV light can reach.When 20 μmol/L desferrioxamine mesylate(DFOM,a strong Fe complexing ligand) was added,the rate of DIC photoproduction fell to 55.6% that of the original SRHA samples with 5.46 μmol/L Fe.
基金funded by the National Science and Engineering Research Council of Canada (NSERC) through a discovery granta postdoctoral fellowship a Nouveaux chercheurs grant from the Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT)
文摘Interest in phenotypic flexibility has increased dramatically over the last decade, but flexibility during reproduction has received relatively little attention from avian scientists, despite its possible impact on fitness. Because most avian species maintain atrophied reproductive organs when not active, reproduction in birds requires major tissue remodeling in preparation for breeding. Females undergo rapid (days) recrudescence and regression of their reproductive organs at each breeding attempt, while males grow their organs ahead of time at a much slower rate (weeks) and may maintain them at maximal size throughout the breeding season. Reproduction is associated with significant metabolic costs. Egg production leads to a 22%-27% increase in resting metabolic rate (RMR) over non-reproductive values. This is partly due to the activity of the oviduct, an organ that may allow females to adjust reproductive investment by modulating egg size and quality. In males, gonadal recrudescence may lead to a 30% increase in RMR, but the data are inconsistent and general conclusions regarding energetic costs of reproduction in males will require more research. Recent studies on captive female zebra finches describe the impacts of these costs on daily energy budgets and highlight the strategies used by birds to maintain their investment in reproduction when energy is limited. Whenever possible, birds use behavioral flexibility as a first means of saving energy. Decreasing locomotor activity saves energy during challenges such as egg production or exposure to cold temperatures and is an efficient way to buffer variation in individual daily energy budgets. However, when behavioral flexibility is not possible, birds must rely on flexibility at the physiological level to meet energy demands. In zebra finches breeding in the cold, this results in a reduced pace of laying, likely due to down-regulation of both reproductive and non-reproductive function, allowing females to defend minimal egg size and maintain reproductive success. More research involving a range of species in captive and flee-living conditions is needed to determine how phenotypic flexibility during tissue remodeling and early reproductive investment translates to natural conditions and affects fitness [Current Zoology 56 (6): 767-792, 2010].
文摘We have used a nonlinear one-dimensional heat transfer model based on temperature-dependent blood perfusion to predict temperature distribution in dermis and subcutaneous tissues subjected to point heating sources. By using Jacobi elliptic functions, we have first found the analytic solution corresponding to the steady-state temperature distribution in the tissue. With the obtained analytic steady-state temperature, the effects of the thermal conductivity, the blood perfusion, the metabolic heat generation, and the coefficient of heat transfer on the temperature distribution in living tissues are numerically analyzed. Our results show that the derived analytic steady-state temperature is useful to easily and accurately study the thermal behavior of the biological system, and can be extended to such applications as parameter measurement, temperature field reconstruction and clinical treatment.
文摘This paper deals with the production-dependent failure rates for a hybrid manufacturing/remanufacturing system subject to random failures and repairs. The failure rate of the manufacturing machine depends on its production rate, while the failure rate of the remanufacturing machine is constant. In the proposed model, the manufacturing machine is characterized by a higher production rate. The machines produce one type of final product and unmet demand is backlogged. At the expected end of their usage, products are collected from the market and kept in recoverable inventory for future remanufacturing, or disposed of. The objective of the system is to find the production rates of the manufacturing and the remanufacturing machines that would minimize a discounted overall cost consisting of serviceable inventory cost, backlog cost and holding cost for returns. A computational algorithm, based on numerical methods, is used for solving the optimality conditions obtained from the application of the stochastic dynamic programming approach. Finally, a numerical example and sensitivity analyses are presented to illustrate the usefulness of the proposed approach. Our results clearly show that the optimal control policy of the system is obtained when the failure rates of the machine depend on its production rate.
文摘Dust collection systems represent a significant portion of a wood product manufacturer’s total electricity use. The system fan works against the static pressure of the entire system—the blast gates, the ductwork, and the upstream or downstream cyclone and/or baghouse. A poor system design (e.g., sharp elbows or undersized ductwork) increases the total amount of static pressure in the system, the fan’s performance curve shifts, increasing the total brake horsepower required by the fan (up to the maximum point on the curve). Additionally, system designers may oversize a dust collection system to ensure adequate dust capture and transport, either to accommodate system expansion or simply to be conservative. Since theoretical fan energy use increases with its velocity cubed, this can be an expensive safety net. This paper presents a comprehensive literature review about industrial cyclone dust collectors energy saving in relation to management, technologies, and policies. Energy-saving technologies like high-efficiency motors (HEMs), variable-speed drives (VSDs), leak detection, and pressure drop reduction have all been examined. Based on energy saving technologies results, it has been found that in the industrial sectors, a sizeable amount of electric energy, and utility bill can be saved using these technologies. Finally, various energy-saving policies were reviewed.
文摘In this article we hypothesized that the arrow of time and space evolve in a discontinuous way in the form of quanta (<i>t</i>=<i>nt<sub>p</sub></i>, <i>s=ml<sub>p</sub></i>). We applied this reasoning to the light geodesics of Schwarzschild’s metric (d<i>s</i><sub>min</sub>=<i>l<sub>p</sub></i>) and obtained different characteristics of the BH. Indeed, quantum light geodesics show that inside the BH a WH is formed and the mass (energy) is not directing towards the singularity <i>r</i>→0 but rather around the BH near the EH as a thick skin (tickness <img src="Edit_ff6adb16-d005-4998-8a9c-badd521800d3.png" width="18" height="25" alt="" />). The total relativistic energy invariant is satisfied for the entire route of the photons. Subsequently, as mass (energy) is found directly at the EH, we applied the quantum tunnel effect in simple semi-classical analysis, and we obtained that particles like protons can leave the EH and that the energy associated with them is in the order of magnitude of Hawking’s radiation. However, the energy of the protons is not necessarily identified with that of the black body (photonic or electromagnetic). Finally, it would be interesting to see the impacts of this quantum light geodesics (d<i>s</i><sub>min</sub>=<i>l<sub>p</sub></i>) on other cases like Kerr’s metric.
基金Scholarships to J.B.were provided by the Natural Sciences and Engineering Research Council of Canada(NSERC-CGS M)the Fonds de recherche du Québec–Nature et technologies(FRQNT)funded by the Natural Sciences and Engineering Research Council of Canada through discovery grants to M.G.andÉB。
文摘Background:Black spruce(Picea mariana(Mill.)BSP)-forested peatlands are widespread ecosystems in boreal North America in which peat accumulation,known as the paludification process,has been shown to induce forest growth decline.The continuously evolving environmental conditions(e.g.,water table rise,increasing peat thickness)in paludified forests may require tree growth mechanism adjustments over time.In this study,we investigate tree ecophysiological mechanisms along a paludification gradient in a boreal forested peatland of eastern Canada by combining peat-based and tree-ring analyses.Carbon and oxygen stable isotopes in tree rings are used to document changes in carbon assimilation rates,stomatal conductance,and water use efficiency.In addition,paleohydrological analyses are performed to evaluate the dynamical ecophysiological adjustments of black spruce trees to site-specific water table variations.Results:Increasing peat accumulation considerably impacts forest growth,but no significant differences in tree water use efficiency(iWUE)are found between the study sites.Tree-ring isotopic analysis indicates no iWUE decrease over the last 100 years,but rather an important increase at each site up to the 1980 s,before iWUE stabilized.Surprisingly,inferred basal area increments do not reflect such trends.Therefore,iWUE variations do not reflect tree ecophysiological adjustments required by changes in growing conditions.Local water table variations induce no changes in ecophysiological mechanisms,but a synchronous shift in iWUE is observed at all sites in the mid-1980 s.Conclusions:Our study shows that paludification induces black spruce growth decline without altering tree water use efficiency in boreal forested peatlands.These findings highlight that failing to account for paludification-related carbon use and allocation could result in the overestimation of aboveground biomass production in paludified sites.Further research on carbon allocation strategies is of utmost importance to understand the carbon sink capacity of these widespread ecosystems in the context of climate change,and to make appropriate forest management decisions in the boreal biome.
基金funded by the Ministère des Forêtsde la Faune et des Parcs(Quebec,Canada),project#142332185。
文摘Background:Tree-related microhabitats(hereafter,"TreMs")are key components of forest biodiversity but they are still poorly known in North American hardwood forests.The spatial patterns of living trees bearing TreMs(hereafter,"TreM-trees")also remain to be determined.As logging practices can lead to a loss of TreM-trees and of their associated biodiversity,it is essential to identify the factors explaining TreM occurrence to better integrate them into forest management.We therefore inventoried TreMs in 40.5-ha survey strips in northern hardwood forests in Quebec,Canada,while recording the spatial location of each tree.Two strips were located in unmanaged oldgrowth forests,and 2 were in forests managed under selection cutting.All 4 stands were dominated by sugar maple(Acer saccharum Marsh.)and American beech(Fagus grandifolia Ehrn.).Beech bark disease,an exotic pathology,was observed in all the strips.Results:Large diameter at breast height and low tree vigor were the main characteristics explaining the presence of TreMs at the tree scale.TreM-trees presented slight spatial aggregation patterns.These aggregates,however,were not well-defined and were generally constituted by a large number of trees bearing few different types of TreMs.Two TreM classes(broken branch or top and woodpecker lodge)also presented a spatial aggregation.Logging practices had no significant effect on TreM occurrence.Beech bark disease increased the frequency of senescent beeches.The impact of this pathology on TreMs was however mitigated by the small size of infected trees and probably by the short time elapsed since its appearance.Conclusion:The factors explaining the presence and abundance of TreMs on trees has so far been little studied in North American hardwood forests.Our results highlight that TreM-tree characteristics in the surveyed forests are consistent with those of previous studies conducted in other forest types and regions(e.g.,Europe or Northwestern America).To our knowledge,this study is also the first to identify a spatial aggregation of TreM-trees and of specific TreM classes.It will be nevertheless necessary to determine whether the small impact of logging activities we observed results from current or past management practices.
文摘With a world growing in population and nutritional needs, diatoms are considered nowadays as microalgae of a very important potential, thus they are exploited in several fields such as ecology, aquaculture, molecular farming, and pharma nutraceuticals. These coveted microalgae are characterized by their diversity, their high division rates, their complex life cycle, likewise their silicified cell walls named frustules. Thus, diatoms have been used for over a century after proving an efficient production of several molecules including Triacylglycerols (TAGs), H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, free fatty acids, vitamins, nutraceuticals, amino acids, proteins, terpenoids, alcohols and carbohydrates like starch, glycogen, and sucrose. </span><i><span style="font-family:Verdana;">Phaeodactylum tricornutum</span></i><span style="font-family:Verdana;"> is the most promising diatom exploited to date, especially as a platform of pharmaceutical production. Herein, we expose diatoms’ main features that allowed using them for molecular </span><span style="font-family:Verdana;">farming. This review exposes likewise, the metabolism and the post-translational </span><span style="font-family:Verdana;">modifications (PTMs) of diatoms as well as current tools and challenges for their molecular and metabolic engineering for a more efficient production of valuable molecules. The knowledge on the biology of the diatoms, the molecular tools, and the various transformation methods available demonstrate the potential in biotechnology of these photosynthetic microorganisms. The widely studied </span><i><span style="font-family:Verdana;">P. tricornutum</span></i><span style="font-family:Verdana;">, as a model organism, is a promising diatom for production of valuable metabolites, despite the challenges and issues related to cultivation.
文摘The goal of this study was to determine the short-term effects of the quality (UV-A/UV-B ratio) and quantity (irradiance) of natural ultraviolet radiation (UVR) on the apoptosis levels in Yellow perch (Perca flavescens) larvae. Apoptosis, or programmed cell death, is an essential event in many physiological processes as well as in pathological conditions. Western blots were used to measure the expression of several key proteins of the apoptotic cascade, such as p53, Bax, Bcl-2, and PARP-1, whereas specific apoptotic DNA fragmentation was measured by an ELISA assay. We predicted that higher UVR exposure would be related to higher levels of apoptosis. Our results showed that specific apoptotic DNA fragmentation was reduced by visible light + UV-A as well as by visible light + UV-A and UV-B treatments although it was not significantly affected by light quantity. However, the expression of p53, Bax/Bcl-2 ratio and PARP-1 were not significantly affected in larvae by the quantity or the quality of the light after two days of exposure. Altogether our results suggest that UVR may modulate the apoptotic process in Yellow perch larvae proposing an interesting role for this stressor on the early development of living organism under natural exposure condition.
文摘The wood polysaccharide composition, a new analytical method, based on ionic liquid dissolution of low amount of biomass coupled with an ELISA essay of polysaccharides. In the present work, we synthesized and tested several imidazolium and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) based ILs for their ability to solubilize Douglas-fir wood while preserving the wall polymer integrity. The couple times-temperatures have been essayed for wood dissolution. Then their efficiency for wood biomass dissolution was compared to the impact of IL on storing and/or destroy polysaccharides. Thanks to the ELISA technique with a set of mAbs against epitopes of the main hemicellulose, pectin, and protein families of cell wall components. Wood destructuration at 80˚C with the 1-ethyl-3-methylimidazolium bromide represents a good compromise of wood dissolution efficiency and low polysaccharide destruction.
文摘Photocatalytic degradation of paraquat (PQ) aqueous solutions was studied in a fixed bed photoreactor under UV irradiation at 368 nm. This contained β-SiC alveolar foams coated with TiO2 P25 by dip-coating method. SEM analyses revealed that the surface of the film did not exhibit cracks in the presence of TTIP as a binder in the TiO2 P25 suspension. The following parameters were studied in continuous mode operation: the flow rate in the reactor, the initial concentration of the paraquat, the pH of the solution, the weight of photocatalytic material with the number of foams in the reactor and the weight of the catalyst deposited onto the support. The results showed that by working under optimal operating conditions at natural pH (pH = 6.7), low paraquat (Co = 10 ppm), and flow (26 mL/min), we recorded approximately (43.16 ± 1.00)% oxidation of paraquat and a decrease in total organic carbon (TOC) of (27.13 ± 1.00)% after about 70 minutes. The apparent rate constant is in the order of (0.0656 ± 0.0010) min-1. In addition, by increasing the amount of β-SiC foams coated with TiO2, we improve the degradation of paraquat in the same order. The study of aging of the material showed its stability over time. However, photocatalytic activity was limited after 20 minutes of UV irradiation due to the limitation of the diffusion of the paraquat molecules towards the surface of the photocatalyst. As an outcome, we obtained an efficient TiO2/β-SiC material for photocatalytic degradation of organic compounds in water.
文摘In most developing countries, particularly in the countries of sub-Saharan Africa, corn cobs are considered as waste polluting the environment during the harvest period of this cereal. In order to valorize this agricultural waste, high-performance, inexpensive and low-energy consumption magnetic bioadsorbents were prepared from corn cobs. The chemically activated raw corn cob was magnetized by coating the surface with magnetite nanoparticles. The prepared biosorbents were characterized by FT-IR, XRD, FE-SEM associated with EDX, HR-TEM, TG analysis, BET surface area analysis and XPS. The maximum specific surface area of 35.22 m<sup>2</sup>/g was reached. An attempt to use of these magnetic biosorbents for the removal of heavy metal like Cr(VI) from aqueous solution was envisaged.
文摘Residues of pharmaceutical and direct metabolites discharged into the aquatic environment have become a challenge for wastewater treatment facilities due to their increase in concentration and their different physicochemical properties. These emerging contaminants are daily detected in surface water and wastewater discharged by municipalities. To remediate the contaminated water, various methods are currently used including primary, secondary, and tertiary advanced treatments. However, some economic and environmental limitations have forced the scientific community to develop alternative disinfection processes to purify wastewater. As such, the adsorption strategy represents a “green” low-cost and effective solution to remove pollutants from water. In this study, a nanomaterial made of N,O-carboxymethyl chitosan (N,O-CMCS) was prepared using chitosan (CS) and monochloroacetic acid under various conditions. N,O-CMCS electrospun was synthetized with the copolymer polyethylene oxide (PEO) to create nanofiber membranes showing a better specificity toward diversified contaminants depending on the pH of medium. The developed adsorbent was used to remove fluoxetine (FLX) from aqueous solutions. The new nanomaterial was characterised using FTIR, NMR, and SEM techniques. Sorption batch tests were carried out using high-performance liquid chromatography and ultraviolet diode array detector (HPLC-UV DAD) under controlled pH experimental conditions to determine the contaminant removal capacity of the nanomaterial. The promising adsorption results obtained with N,O-CMCS/PEO nanofibers are among the best ones obtained so far in comparison to other commercial and synthetized adsorbents tested for FLX’s adsorption. Kinetic experiments were also performed to investigate effects of contact times on the FLX adsorption. Experimental results were fitted to both common kinetic models pseudo-first and second order. The latter kinetic model described the best the sorption on surface. It revealed a possible chemisorption mechanism with electrostatic bounding for N,O-CMCS/PEO nanofibers.
文摘In this study, the authors characterized the raw clayey soil of Moukosso and modified by dimethylsulfoxide (DMSO) by several analytical methods, namely: X-ray diffraction (XRD), Fourier transform infrared (FTIR) and gravimetric thermal analysis (TGA). The cation exchange capacity (CEC) was also determined. Mineralogical analysis by XRD revealed the presence of muscovite (29.7%), kaolinite (8.9%), anatase (2.4%) and quartz (58.9%). The characterization of the organo-clay by infrared and by thermogravimetric analysis confirmed the intercalation of DMSO by the presence of vibration bands at 1008 cm<sup>-1</sup> and 1070 cm<sup>-1</sup> and a strong increase in the loss of mass. The cation exchange capacity of the raw material is 7.4 meq/100g. Rapid adsorption of Pb<sup>2+</sup> ions was observed between 5 and 15 minutes of stirring time in both cases (raw clay and organomodified clay). The modeling of the isotherms by the models of Langmuir and Freudlich showed that these are of type S with a maximum amount of adsorption of 22.471 mg/g for the fine fraction and 41.493 mg/g for the clay intercalated with DMSO. Langmuir’s model best reproduces the experimental data of this study.
文摘This idea of quantifying the energy of bodies orbiting the Sun is not new. We have identified that quantization applies well if we use the true quantum number associated with the true energy state of rotating bodies. This quantum number is very high for the main bodies or planets (10<sup>~70 to 76</sup>). However, since quantum energy levels E are very high and ΔE very low we observe that bodies can in practice occupy all orbits. Thus, the current observed stable positions of the bodies are the results of the quantization and the sum of the effects of other perturbative phenomena. To find a quantum state starting with n = 1, we expressed the true integer quantum numbers as a function of that of the planet Mercury and we find an excellent correlation. However, the search for a correlation of prediction of the average orbital radius of bodies using the simple integer number n = 1, 2, 3, 4, 5, 6, 7, … is not excellent for bodies beyond the planet Pluto. Indeed, several trans-Neptunian bodies have similar integer quantum numbers, which poses a problem in the sequence of integer numbers beyond 10. Moreover, it appears that the trans-Neptunian bodies seem to be grouped for many of them according to relatively well-defined bands. The study made it possible to question the de Broglie wavelength of bodies (10<sup>~-58 to -65</sup> m). Indeed, with the hypothesis of Planck quantities that would apply to the scale of the universe, it is difficult to conceive that de Broglie wavelengths are less than the Planck length l<sub>p</sub>. This led to an expression of the modified de Broglie wavelength λ<sub>m</sub> that predicts an asymptotic lower limit value equal to πl<sub>p</sub>. This modified de Broglie wavelength makes it possible to obtain a better correlation for the prediction of the average orbital radius of bodies. Finally, this modified wavelength of de Broglie made it possible to put into perspective the concept of the quantification of space with the idea of the minimum wavelength associated with photon’s energies during the generation of the energy of the universe according to a model already presented in this review. This modified de Broglie wavelength also makes it possible to imagine that the quantification of the volume of space involves the geometry of the sphere and the cube.