Indonesia is one of the largest coconut-producing countries in the world.The utilization of coconut shell waste into briquettes will increase the selling value and become a great export opportunity.However,the effect ...Indonesia is one of the largest coconut-producing countries in the world.The utilization of coconut shell waste into briquettes will increase the selling value and become a great export opportunity.However,the effect of adhesives on the quality of coconut shell charcoal briquettes made using screw extruder machine has not been widely studied.This study aims to determine the effect of adhesive type on the quality of coconut shell charcoal briquettes.The process of fabricating briquettes in this study included crushing,mixing,blending,pressing,and drying.In the mixing process,3 types of adhesives were used,namely tapioca flour(Briquette_1),cassava flour(Briquette_2),and modified cassava flour(Briquette_3)with a concentration of 5%of the weight of coconut shell charcoal powders.The quality of the resulting briquettes and commercial briquettes will be evaluated by moisture content,ash content,volatile matter,fixed carbon,calorific value,density,compressive,and drop test testing.The results of this research showed that the type of adhesive had a significant effect on the quality of the briquettes produced.Specimen Briquette_1 had better quality than commercial briquettes(Briquette_4)and other briquette specimens.The test results showed that Briquette_1 produced briquettes with better compressive strength and friability than the other specimens,at 6.95 N/mm^(2) and 4.44%,respectively.The moisture content,ash content,fixed carbon,and calorific value of Briquette_1 have met the requirements set by the Indonesian National Standard(SNI)number 01-6235-2000.Meanwhile,the volatile matter content and density of Briquette_1 are by the standards of Japan and the United States America(USA).展开更多
Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_...Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.展开更多
Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberrei...Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberreinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution.Among the natural fibre,jute fibre obtained from a bast plant has an increasing trend in the application,especially as a reinforcement material.Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites.Nevertheless,current demands on sustainable materials have required new developments in thermoplastic composites.In this paper,the author reviews jute plants as reinforcement materials for thermoplastic matrix polymers.This review provides an overview of the sustainability of jute plants as reinforcement material for thermoplastic matrix polymers.The overview on jute based thermoplastic composites focused on the thermal behavior and mechanical properties.Apart from physical,chemical,and mechanical properties,the study also covers the current and perspectives for future research challenges faced by the researchers on jute fibre reinforced thermoplastic composites.展开更多
Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with u...Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with unique properties.This work focused on the adsorption of Pb(Ⅱ)and Zn(Ⅱ)from binary system,a mixture containing two metal ion solutions present simultaneously,onto NaOH-modified CFA(MCFA).Several adsorption tests were conducted to evaluate the effect of several parameters,including pH and contact times.The experiment results indicated that chemical treatment of CFA with NaOH increased pore volume from 0.021 to 0.223 cm^3·g^(-1).In addition,it could also enhance the availability of functional groups on both minerals and unburned carbon,resulting in almost 100%Pb(Ⅱ)and 97%Zn(Ⅱ)adsorbed.The optimum pH for adsorption system was pH=3 and quasi-equilibrium occurred in 240 minutes.Equilibrium data from the experimental results were analyzed using Modified Extended Langmuir(MEL)and Competitive Adsorption Langmuir-Langmuir(CALL)isotherm models.The analysis results showed that the CALL isotherm model could better describe the Pb(Ⅱ)and Zn(Ⅱ)adsorption process onto MCFA in binary system compared with MEL isotherm model.展开更多
Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biom...Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biomass into a more valuable product which is bio-oil. Bio-oil is a condensed liquid from the vapor phase of biomass pyrolysis such as coconut shells and coffee shells. Biomass composition consisting of hemicellulose, cellulose, and lignin will oxidize to phenol which is the main content in bio-oil. The total phenolic compounds contained in bio-oil are 47.03%(coconut shell) and 45%(coffee shell). The content of phenol compounds in corrosive bio-oils still quite high, the use of this bio-oil directly will cause various difficulties in the combustion system due to high viscosity, low calorific value, corrosivity, and instability. Phenol compounds have some benefits as one of the compounds for floor cleaners and disinfectants which are contained in bio-oil.The correlation between experimental data and calculations shows that the UNIQUAC Functional-group Activity Coefficients(UNIFAC) equilibrium model can be used to predict the liquid–liquid equilibrium in the phenol extraction process of the coconut shell pyrolysis bio-oil. While the Non-Random Two Liquid(NRTL) equilibrium model can be used to predict liquid–liquid equilibrium in the extraction process of phenol from bio-oil pyrolysis of coffee shells.展开更多
The aim of this research work was to evaluate the potential of using renewable natural feedstock,i.e.,Jatropha curcas oil(JCO)for the synthesis of non-isocyanate polyurethane(NIPU)resin for wood composite applications...The aim of this research work was to evaluate the potential of using renewable natural feedstock,i.e.,Jatropha curcas oil(JCO)for the synthesis of non-isocyanate polyurethane(NIPU)resin for wood composite applications.Commercial polyurethane(PU)is synthesized through a polycondensation reaction between isocyanate and poly-ol.However,utilizing toxic and unsustainable isocyanates for obtaining PU could contribute to negative impacts on the environment and human health.Therefore,the development of PU from eco-friendly and sustainable resources without the isocyanate route is required.In this work,tetra-n-butyl ammonium bromide was used as the activator to open the epoxy ring with 3-Aminopropyltriethoxisylane as a catalyst to yield urethane of JCO(UJCO).The UJCO were characterized by Fourier Transform Infra-Red spectroscopy(FTIR)and their oxirane,and hydroxyl values were measured.The result showed that a decrease in oxirane value was found while the hydroxyl value was increased during the time,confirming that the urethane group was formed.The presence of functional groups in FTIR spectra at wave numbers 1732.08,1562.34,and 3348.42 cm^(−1) indicates the functional groups of C=O(urethane carbonyl),–NH,and–OH,respectively confirmed this finding.The potential applications of NIPU in the wood composite were also outlined.展开更多
Zeolite A has been successfully synthesized from geothermal waste with natrium aluminate and natrium silicate using conventional(C-H)and microwave heating(M-H)for the hydrothermal treatment.The products obtained for d...Zeolite A has been successfully synthesized from geothermal waste with natrium aluminate and natrium silicate using conventional(C-H)and microwave heating(M-H)for the hydrothermal treatment.The products obtained for different aging times have been characterized using X-Ray Diffraction(XRD),Fourier transformation infrared spectroscopy(FTIR),and scanning electron microscopy(SEM).It is shown that with the M-H process,zeolite can be formed at relatively low temperature(100°C)in a relatively short time(40 min).The crystallization of zeolite A has been found to be generally promoted by an increase of aging and synthesis time;however,it has also been observed that relative long aging times can transform it into sodalite.Zeolite A produced through the M-H process generally displays a smaller and more homogeneous crystal size with respect to that obtained with the C-H method.展开更多
In this paper,a robust optimization and sustainable investigation are undertaken to find a feasible design for a microgrid in a campus area at minimum cost.The campus microgrid needs to be optimized with further inves...In this paper,a robust optimization and sustainable investigation are undertaken to find a feasible design for a microgrid in a campus area at minimum cost.The campus microgrid needs to be optimized with further investigation,especially to reduce the cost while considering feasibility in ensuring the continuity of energy supply.A modified combination of genetic algorithm and particle swarm optimization(MGAPSO)is applied to minimize the cost while considering the feasibility of a grid-connected photovoltaic/battery/diesel system.Then,a sustainable energy-management system is also defined to analyse the characteristics of the microgrid.The optimization results show that the MGAPSO method produces a better solution with better convergence and lower costs than conventional methods.The MGAPSO optimization reduces the system cost by up to 11.99%compared with the conventional methods.In the rest of the paper,the components that have been optimized are adjusted in a realistic scheme to discuss the energy profile and allocation characteristics.Further investigation has shown that MGAPSO can optimize the campus microgrid to be self-sustained by enhancing renewable-energy utilization.展开更多
Dear Editor,Paper wasps have been the subject of numerous studies across various disciplines,including biology(Grinsted&Field,2017),ecology(Sheehan et al.,2015),chemistry(Cini et al.,2011),and physics(Chawla et al...Dear Editor,Paper wasps have been the subject of numerous studies across various disciplines,including biology(Grinsted&Field,2017),ecology(Sheehan et al.,2015),chemistry(Cini et al.,2011),and physics(Chawla et al.,2020).Previous research has primarily focused on their behavior from biological and ecological perspectives.However,recent investigations from a physics standpoint have also explored their nesting behavior,including the use of defensive structures.展开更多
文摘Indonesia is one of the largest coconut-producing countries in the world.The utilization of coconut shell waste into briquettes will increase the selling value and become a great export opportunity.However,the effect of adhesives on the quality of coconut shell charcoal briquettes made using screw extruder machine has not been widely studied.This study aims to determine the effect of adhesive type on the quality of coconut shell charcoal briquettes.The process of fabricating briquettes in this study included crushing,mixing,blending,pressing,and drying.In the mixing process,3 types of adhesives were used,namely tapioca flour(Briquette_1),cassava flour(Briquette_2),and modified cassava flour(Briquette_3)with a concentration of 5%of the weight of coconut shell charcoal powders.The quality of the resulting briquettes and commercial briquettes will be evaluated by moisture content,ash content,volatile matter,fixed carbon,calorific value,density,compressive,and drop test testing.The results of this research showed that the type of adhesive had a significant effect on the quality of the briquettes produced.Specimen Briquette_1 had better quality than commercial briquettes(Briquette_4)and other briquette specimens.The test results showed that Briquette_1 produced briquettes with better compressive strength and friability than the other specimens,at 6.95 N/mm^(2) and 4.44%,respectively.The moisture content,ash content,fixed carbon,and calorific value of Briquette_1 have met the requirements set by the Indonesian National Standard(SNI)number 01-6235-2000.Meanwhile,the volatile matter content and density of Briquette_1 are by the standards of Japan and the United States America(USA).
基金funded the World Class Research(WCR)Grant of Universitas Diponegoro with Contract Number 357-36/UN7.D2/PP/IV/2024.
文摘Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.
文摘Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberreinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution.Among the natural fibre,jute fibre obtained from a bast plant has an increasing trend in the application,especially as a reinforcement material.Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites.Nevertheless,current demands on sustainable materials have required new developments in thermoplastic composites.In this paper,the author reviews jute plants as reinforcement materials for thermoplastic matrix polymers.This review provides an overview of the sustainability of jute plants as reinforcement material for thermoplastic matrix polymers.The overview on jute based thermoplastic composites focused on the thermal behavior and mechanical properties.Apart from physical,chemical,and mechanical properties,the study also covers the current and perspectives for future research challenges faced by the researchers on jute fibre reinforced thermoplastic composites.
基金Deanship of Scientific Research(DSR)at King Saud University(KSU),Saudi Arabia for financially supporting this research project(No.RG-1435-078)。
文摘Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with unique properties.This work focused on the adsorption of Pb(Ⅱ)and Zn(Ⅱ)from binary system,a mixture containing two metal ion solutions present simultaneously,onto NaOH-modified CFA(MCFA).Several adsorption tests were conducted to evaluate the effect of several parameters,including pH and contact times.The experiment results indicated that chemical treatment of CFA with NaOH increased pore volume from 0.021 to 0.223 cm^3·g^(-1).In addition,it could also enhance the availability of functional groups on both minerals and unburned carbon,resulting in almost 100%Pb(Ⅱ)and 97%Zn(Ⅱ)adsorbed.The optimum pH for adsorption system was pH=3 and quasi-equilibrium occurred in 240 minutes.Equilibrium data from the experimental results were analyzed using Modified Extended Langmuir(MEL)and Competitive Adsorption Langmuir-Langmuir(CALL)isotherm models.The analysis results showed that the CALL isotherm model could better describe the Pb(Ⅱ)and Zn(Ⅱ)adsorption process onto MCFA in binary system compared with MEL isotherm model.
基金the Ministry of Research,Technology and Higher Education,Indonesia,for the financial support of this work through the research grant of "Produk Terapan" Universitas Negeri Semarang,Nomor:084/SP2H/LT/DRPM/IV/2017
文摘Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biomass into a more valuable product which is bio-oil. Bio-oil is a condensed liquid from the vapor phase of biomass pyrolysis such as coconut shells and coffee shells. Biomass composition consisting of hemicellulose, cellulose, and lignin will oxidize to phenol which is the main content in bio-oil. The total phenolic compounds contained in bio-oil are 47.03%(coconut shell) and 45%(coffee shell). The content of phenol compounds in corrosive bio-oils still quite high, the use of this bio-oil directly will cause various difficulties in the combustion system due to high viscosity, low calorific value, corrosivity, and instability. Phenol compounds have some benefits as one of the compounds for floor cleaners and disinfectants which are contained in bio-oil.The correlation between experimental data and calculations shows that the UNIQUAC Functional-group Activity Coefficients(UNIFAC) equilibrium model can be used to predict the liquid–liquid equilibrium in the phenol extraction process of the coconut shell pyrolysis bio-oil. While the Non-Random Two Liquid(NRTL) equilibrium model can be used to predict liquid–liquid equilibrium in the extraction process of phenol from bio-oil pyrolysis of coffee shells.
文摘The aim of this research work was to evaluate the potential of using renewable natural feedstock,i.e.,Jatropha curcas oil(JCO)for the synthesis of non-isocyanate polyurethane(NIPU)resin for wood composite applications.Commercial polyurethane(PU)is synthesized through a polycondensation reaction between isocyanate and poly-ol.However,utilizing toxic and unsustainable isocyanates for obtaining PU could contribute to negative impacts on the environment and human health.Therefore,the development of PU from eco-friendly and sustainable resources without the isocyanate route is required.In this work,tetra-n-butyl ammonium bromide was used as the activator to open the epoxy ring with 3-Aminopropyltriethoxisylane as a catalyst to yield urethane of JCO(UJCO).The UJCO were characterized by Fourier Transform Infra-Red spectroscopy(FTIR)and their oxirane,and hydroxyl values were measured.The result showed that a decrease in oxirane value was found while the hydroxyl value was increased during the time,confirming that the urethane group was formed.The presence of functional groups in FTIR spectra at wave numbers 1732.08,1562.34,and 3348.42 cm^(−1) indicates the functional groups of C=O(urethane carbonyl),–NH,and–OH,respectively confirmed this finding.The potential applications of NIPU in the wood composite were also outlined.
基金the International Publication research grant,Diponegoro University,with the Contract No.385-90/UN7.P4.3/PP/2018.
文摘Zeolite A has been successfully synthesized from geothermal waste with natrium aluminate and natrium silicate using conventional(C-H)and microwave heating(M-H)for the hydrothermal treatment.The products obtained for different aging times have been characterized using X-Ray Diffraction(XRD),Fourier transformation infrared spectroscopy(FTIR),and scanning electron microscopy(SEM).It is shown that with the M-H process,zeolite can be formed at relatively low temperature(100°C)in a relatively short time(40 min).The crystallization of zeolite A has been found to be generally promoted by an increase of aging and synthesis time;however,it has also been observed that relative long aging times can transform it into sodalite.Zeolite A produced through the M-H process generally displays a smaller and more homogeneous crystal size with respect to that obtained with the C-H method.
基金supported by UEESRG(UNNES Electrical Engineering Students Research Group),Department of Electrical Engineering,Universitas Negeri Semarang in facilitating our study.This study is sponsored by Lembaga Penelitian dan Pengabdian Masyarakat(LP2M)Universitas Negeri Semarang under grant no.42.22.4/UN37/PPK.4.5/2020 and previous grant research funding.
文摘In this paper,a robust optimization and sustainable investigation are undertaken to find a feasible design for a microgrid in a campus area at minimum cost.The campus microgrid needs to be optimized with further investigation,especially to reduce the cost while considering feasibility in ensuring the continuity of energy supply.A modified combination of genetic algorithm and particle swarm optimization(MGAPSO)is applied to minimize the cost while considering the feasibility of a grid-connected photovoltaic/battery/diesel system.Then,a sustainable energy-management system is also defined to analyse the characteristics of the microgrid.The optimization results show that the MGAPSO method produces a better solution with better convergence and lower costs than conventional methods.The MGAPSO optimization reduces the system cost by up to 11.99%compared with the conventional methods.In the rest of the paper,the components that have been optimized are adjusted in a realistic scheme to discuss the energy profile and allocation characteristics.Further investigation has shown that MGAPSO can optimize the campus microgrid to be self-sustained by enhancing renewable-energy utilization.
文摘Dear Editor,Paper wasps have been the subject of numerous studies across various disciplines,including biology(Grinsted&Field,2017),ecology(Sheehan et al.,2015),chemistry(Cini et al.,2011),and physics(Chawla et al.,2020).Previous research has primarily focused on their behavior from biological and ecological perspectives.However,recent investigations from a physics standpoint have also explored their nesting behavior,including the use of defensive structures.