期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
多区域海洋M_(3)分潮的观测与验证
1
作者 Adam Thomas DEVLIN 潘家祎 Déborah IDIER 《中国科学:地球科学》 CSCD 北大核心 2023年第10期2300-2313,共14页
M_(3)海洋分潮(三阶潮或一日三次周期潮汐)经常受到忽视,因而对M_(3)分潮进行更精确的分析研究,可以提高潮汐预测、海洋数值模拟、大地测量的准确度.尽管M_(3)分潮在整体潮汐所占比例较小,但由于陆架共振及其他影响,某些沿海地区M_(3)... M_(3)海洋分潮(三阶潮或一日三次周期潮汐)经常受到忽视,因而对M_(3)分潮进行更精确的分析研究,可以提高潮汐预测、海洋数值模拟、大地测量的准确度.尽管M_(3)分潮在整体潮汐所占比例较小,但由于陆架共振及其他影响,某些沿海地区M_(3)潮可大大增强.本文使用157个验潮站的数据,以及9年时间窗口,对水位变化进行了潮汐谐波分析.本文还分析了太阴M_(3)潮,将这些结果与全球同化的模型数据(TPXO9v5a)进行了比较,重点研究了西太平洋和欧洲陆架地区.与验潮站数据相比,大部分区域TPXO9v5a导出的M_(3)潮振幅和相位滞后表现良好,但在沿海和地形复杂的区域,其结果误差较大.在欧洲陆架海域使用了一个浅水数值模型(MARS),该模型在某些地区优于TPXO的结果.在欧洲陆架海域的五个子区域中,TPXO在三个地点的M_(3)振幅及相位滞后预测的均方根误差(RMSE)更小.而在其他子区域,MARS模拟结果更为准确.本文发现一些地点的M_(3)振幅有着显著长周期变化,这与海平面上升(SLR)导致的共振效应有关,这种共振效应可以调制海洋对天文引潮力的响应.本文使用MARS模型,应用各种海平面上升的预设情境,对M_(3)振幅的长周期变化进行了模拟研究.结果表明随着时间的推移,超过一半验潮站M_(3)振幅长期变化方向(增加或减少)与MARS模型结果一致. 展开更多
关键词 三阶海洋潮汐 M3分潮 卫星高度计 数值模拟 海平面上升
原文传递
Trait allometries generate super-honesty in Anolis dewlaps and may underlie sexual dimorphism 被引量:1
2
作者 Maria PETELO Lindsey SWIERK 《Integrative Zoology》 SCIE CSCD 2017年第2期97-111,共15页
Whether or not sexually selected traits consistently exhibit positive allometry(i.e.are disproportionately large in larger individuals)is an ongoing debate.Multiple models and exceptions to this rule suggest that the ... Whether or not sexually selected traits consistently exhibit positive allometry(i.e.are disproportionately large in larger individuals)is an ongoing debate.Multiple models and exceptions to this rule suggest that the underlying drivers of sexual trait allometry are nuanced.Here,we compare allometries of sexual and non-sexual traits of a species(Anolis aquaticus)within a well-studied lizard genus to test the competing hypotheses that sexual traits are,or are not,defined by positive allometry.We further consider the relationships of trait functions,which are relatively well understood in the genus Anolis,and allometry to identify potential drivers of allometric patterns.In particular,we explore how trait allometries interact to influence total organism function and generate sexual dimorphism.We quantified size(of targeted traits)and color of a sexual signal(the dewlap)in Anolis aquaticus in the field.The dewlap conveyed information relevant to intra-sexual combat and exhibited positive allometry.Overall,our results suggest that using single-trait allometries as indicators of past selection provides only an incomplete understanding of trait evolution.Although the function of positive allometry in some individual sexual signals(e.g.those conveying“super-honest”information)may be straightforward,we illustrate how scaling relationships interact synergistically to influence the function of phenotypes and propose avenues for future research. 展开更多
关键词 Anolis[Norops]aquaticus color morphology reproductive strategy SCALING
原文传递
FungalTraits:a user-friendly traits database of fungi and fungus-like stramenopiles 被引量:2
3
作者 Sergei Põlme Kessy Abarenkov +125 位作者 RHenrik Nilsson Björn D.Lindahl Karina Engelbrecht Clemmensen Havard Kauserud Nhu Nguyen Rasmus Kjøller Scott T.Bates Petr Baldrian Tobias Guldberg Frøslev Kristjan Adojaan Alfredo Vizzini Ave Suija Donald Pfister Hans-Otto Baral Helle Järv Hugo Madrid Jenni Nordén Jian-Kui Liu Julia Pawlowska Kadri Põldmaa Kadri Pärtel Kadri Runnel Karen Hansen Karl-Henrik Larsson Kevin David Hyde Marcelo Sandoval-Denis Matthew E.Smith Merje Toome-Heller Nalin N.Wijayawardene Nelson Menolli Jr Nicole K.Reynolds Rein Drenkhan Sajeewa S.N.Maharachchikumbura Tatiana B.Gibertoni Thomas Læssøe William Davis Yuri Tokarev Adriana Corrales Adriene Mayra Soares Ahto Agan Alexandre Reis Machado Andrés Argüelles-Moyao Andrew Detheridge Angelina de Meiras-Ottoni Annemieke Verbeken Arun Kumar Dutta Bao-Kai Cui C.K.Pradeep César Marín Daniel Stanton Daniyal Gohar Dhanushka N.Wanasinghe Eveli Otsing Farzad Aslani Gareth W.Griffith Thorsten H.Lumbsch Hans-Peter Grossart Hossein Masigol Ina Timling Inga Hiiesalu Jane Oja John Y.Kupagme József Geml Julieta Alvarez-Manjarrez Kai Ilves Kaire Loit Kalev Adamson Kazuhide Nara Kati Küngas Keilor Rojas-Jimenez Krišs Bitenieks Laszlo Irinyi LászlóGNagy Liina Soonvald Li-Wei Zhou Lysett Wagner M.Catherine Aime MaarjaÖpik María Isabel Mujica Martin Metsoja Martin Ryberg Martti Vasar Masao Murata Matthew PNelsen Michelle Cleary Milan C.Samarakoon Mingkwan Doilom Mohammad Bahram Niloufar Hagh-Doust Olesya Dulya Peter Johnston Petr Kohout Qian Chen Qing Tian Rajasree Nandi Rasekh Amiri Rekhani Hansika Perera Renata dos Santos Chikowski Renato L.Mendes-Alvarenga Roberto Garibay-Orijel Robin Gielen Rungtiwa Phookamsak Ruvishika S.Jayawardena Saleh Rahimlou Samantha C.Karunarathna Saowaluck Tibpromma Shawn P.Brown Siim-Kaarel Sepp Sunil Mundra Zhu-Hua Luo Tanay Bose Tanel Vahter Tarquin Netherway Teng Yang Tom May Torda Varga Wei Li Victor Rafael Matos Coimbra Virton Rodrigo Targino de Oliveira Vitor Xavier de Lima Vladimir S.Mikryukov Yongzhong Lu Yosuke Matsuda Yumiko Miyamoto Urmas Kõljalg Leho Tedersoo 《Fungal Diversity》 SCIE 2020年第6期I0001-I0016,共16页
The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies.Over the past decades,rapid development and affordability of molecular tools have tremendously improved i... The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies.Over the past decades,rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats.Yet,in spite of the progress of molecular methods,knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging.In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels.Combining the information from previous efforts such as FUNGuild and FunFun together with involvement of expert knowledge,we reannotated 10,210 and 151 fungal and Stramenopila genera,respectively.This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera,designed for rapid functional assignments of environmental stud-ies.In order to assign the trait states to fungal species hypotheses,the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences.On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1%dissimilarity threshold. 展开更多
关键词 Fungal traits Trophic modes Function GUILD BIOINFORMATICS High-throughput sequencing Community ecology
原文传递
Environmental drivers of seasonal shifts in abundance of wild pigs(Sus scrofa)in a tropical island environment
4
作者 Derek R.Risch Shaya Honarvar Melissa R.Price 《Ecological Processes》 SCIE EI 2022年第1期772-786,共15页
Background:Non-native wild pigs(Sus scrofa)threaten sensitive flora and fauna,cost billions of dollars in economic damage,and pose a significant human–wildlife conflict risk.Despite growing interest in wild pig resea... Background:Non-native wild pigs(Sus scrofa)threaten sensitive flora and fauna,cost billions of dollars in economic damage,and pose a significant human–wildlife conflict risk.Despite growing interest in wild pig research,basic life history information is often lacking throughout their introduced range and particularly in tropical environments.Similar to other large terrestrial mammals,pigs possess the ability to shift their range based on local climatic conditions or resource availability,further complicating management decisions.The objectives of this study were to(i)model the distribution and abundance of wild pigs across two seasons within a single calendar year;(ii)determine the most important environmental variables driving changes in pig distribution and abundance;and(iii)highlight key differences between seasonal models and their potential management implications.These study objectives were achieved using zero-inflated models constructed from abundance data obtained from extensive field surveys and remotely sensed environmental variables.Results:Our models demonstrate a considerable change in distribution and abundance of wild pigs throughout a single calendar year.Rainfall and vegetation height were among the most influential variables for pig distribution during the spring,and distance to adjacent forest and vegetation density were among the most significant for the fall.Further,our seasonal models show that areas of high conservation value may be more vulnerable to threats from wild pigs at certain times throughout the year,which was not captured by more traditional modeling approaches using aggregated data.Conclusions:Our results suggest that(i)wild pigs can considerably shift their range throughout the calendar year,even in tropical environments;(ii)pigs prefer dense forested areas in the presence of either hunting pressure or an abundance of frugivorous plants,but may shift to adjacent areas in the absence of either of these conditions;and(iii)seasonal models provide valuable biological information that would otherwise be missed by common modeling approaches that use aggregated data over many years.These findings highlight the importance of considering biologically relevant time scales that provide key information to better inform management strategies,particularly for species whose ranges include both temperate and tropical environments and thrive in both large continental and small island ecosystems. 展开更多
关键词 ECOLOGY Spatial Temporal Species distribution modeling Wild boar Sus scrofa Feral pigs
原文传递
Microfluidics for interrogating live intact tissues
5
作者 Lisa F.Horowitz Adan D.Rodriguez +1 位作者 Tyler Ray Albert Folch 《Microsystems & Nanoengineering》 EI CSCD 2020年第1期538-564,共27页
The intricate microarchitecture of tissues–the“tissue microenvironment”–is a strong determinant of tissue function.Microfluidics offers an invaluable tool to precisely stimulate,manipulate,and analyze the tissue m... The intricate microarchitecture of tissues–the“tissue microenvironment”–is a strong determinant of tissue function.Microfluidics offers an invaluable tool to precisely stimulate,manipulate,and analyze the tissue microenvironment in live tissues and engineer mass transport around and into small tissue volumes.Such control is critical in clinical studies,especially where tissue samples are scarce,in analytical sensors,where testing smaller amounts of analytes results in faster,more portable sensors,and in biological experiments,where accurate control of the cellular microenvironment is needed.Microfluidics also provides inexpensive multiplexing strategies to address the pressing need to test large quantities of drugs and reagents on a single biopsy specimen,increasing testing accuracy,relevance,and speed while reducing overall diagnostic cost.Here,we review the use of microfluidics to study the physiology and pathophysiology of intact live tissues at sub-millimeter scales.We categorize uses as either in vitro studies–where a piece of an organism must be excised and introduced into the microfluidic device–or in vivo studies–where whole organisms are small enough to be introduced into microchannels or where a microfluidic device is interfaced with a live tissue surface(e.g.the skin or inside an internal organ or tumor)that forms part of an animal larger than the device.These microfluidic systems promise to deliver functional measurements obtained directly on intact tissue–such as the response of tissue to drugs or the analysis of tissue secretions–that cannot be obtained otherwise. 展开更多
关键词 FLUID DRUGS testing
原文传递
Correction to:FungalTraits:a user friendly traits database of fungi and fungus-like stramenopiles 被引量:1
6
作者 Sergei Põlme Kessy Abarenkov +125 位作者 RHenrik Nilsson Björn D.Lindahl Karina Engelbrecht Clemmensen Havard Kauserud Nhu Nguyen Rasmus Kjøller Scott T.Bates Petr Baldrian Tobias Guldberg Frøslev Kristjan Adojaan Alfredo Vizzini Ave Suija Donald Pfister Hans-Otto Baral Helle Järv Hugo Madrid Jenni Nordén Jian-Kui Liu Julia Pawlowska Kadri Põldmaa Kadri Pärtel Kadri Runnel Karen Hansen Karl-Henrik Larsson Kevin David Hyde Marcelo Sandoval-Denis Matthew E.Smith Merje Toome-Heller Nalin N.Wijayawardene Nelson Menolli Jr Nicole K.Reynolds Rein Drenkhan Sajeewa S.N.Maharachchikumbura Tatiana B.Gibertoni Thomas Læssøe William Davis Yuri Tokarev Adriana Corrales Adriene Mayra Soares Ahto Agan Alexandre Reis Machado Andrés Argüelles-Moyao Andrew Detheridge Angelina de Meiras-Ottoni Annemieke Verbeken Arun Kumar Dutta Bao-Kai Cui C.K.Pradeep César Marín Daniel Stanton Daniyal Gohar Dhanushka N.Wanasinghe Eveli Otsing Farzad Aslani Gareth W.Griffith Thorsten H.Lumbsch Hans-Peter Grossart Hossein Masigol Ina Timling Inga Hiiesalu Jane Oja John Y.Kupagme József Geml Julieta Alvarez-Manjarrez Kai Ilves Kaire Loit Kalev Adamson Kazuhide Nara Kati Küngas Keilor Rojas-Jimenez Krišs Bitenieks LászlóIrinyi LászlóGNagy Liina Soonvald Li-Wei Zhou Lysett Wagner M.Catherine Aime MaarjaÖpik María Isabel Mujica Martin Metsoja Martin Ryberg Martti Vasar Masao Murata Matthew P.Nelsen Michelle Cleary Milan C.Samarakoon Mingkwan Doilom Mohammad Bahram Niloufar Hagh-Doust Olesya Dulya Peter Johnston Petr Kohout Qian Chen Qing Tian Rajasree Nandi Rasekh Amiri Rekhani Hansika Perera Renata dos Santos Chikowski Renato L.Mendes-Alvarenga Roberto Garibay-Orijel Robin Gielen Rungtiwa Phookamsak Ruvishika S.Jayawardena Saleh Rahimlou Samantha C.Karunarathna Saowaluck Tibpromma Shawn P.Brown Siim-Kaarel Sepp Sunil Mundra Zhu-Hua Luo Tanay Bose Tanel Vahter Tarquin Netherway Teng Yang Tom May Torda Varga Wei Li Victor Rafael Matos Coimbra Virton Rodrigo Targino de Oliveira Vitor Xavier de Lima Vladimir S.Mikryukov Yongzhong Lu Yosuke Matsuda Yumiko Miyamoto Urmas Kõljalg Leho Tedersoo 《Fungal Diversity》 SCIE 2021年第2期129-132,共4页
Correction to:Fungal Diversity(2020)105:116 https://doi.org/10.1007/s13225-020-00466-2 There were errors in the name of author LászlóG.Nagy and in affiliation no.31 in the original publication.The original a... Correction to:Fungal Diversity(2020)105:116 https://doi.org/10.1007/s13225-020-00466-2 There were errors in the name of author LászlóG.Nagy and in affiliation no.31 in the original publication.The original article has been corrected. 展开更多
关键词 DATABASE RAM friendly
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部