In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possibl...In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium.展开更多
Metabolic reprogramming is a key feature driving oncogenesis in cancers. Recent studies have revealed that protein metabolism is largely altered in gliomas facilitating its malignant growth. Urea is the end product of...Metabolic reprogramming is a key feature driving oncogenesis in cancers. Recent studies have revealed that protein metabolism is largely altered in gliomas facilitating its malignant growth. Urea is the end product of nitrogen metabolism which is mainly produced by arginase. The interdependence of arginase and other biochemical mechanisms triggered scientific research interest. This research aimed to investigate the relationships between the urea as the main parameter of protein metabolism and glioma progression. It was also the most pronounced relationship between urea and the level of the nuclear protein Ki-67 as a marker of proliferative activity and O-6-methylguanine-DNA methyltransferase (MGMT), which performs DNA repair. Postoperative material from 20 patients with gliomas of different grades of anaplasia was analyzed.展开更多
It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density,the Doppler frequency shift leads to generation of intense radiation in b...It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density,the Doppler frequency shift leads to generation of intense radiation in both the high-frequency(up to the x-ray)and low-frequency(mid-infrared)ranges.The efficiency of energy conversion into the wavelength range above 3μm can reach several percent,which makes it possible to obtain relativistically intense pulses in the mid-infrared range.These pulses are synchronized with high harmonics in the ultraviolet and x-ray ranges,which opens up opportunities for high-precision pump–probe measurements,in particular,laser-induced electron diffraction and transient absorption spectroscopy.展开更多
This article presents the results of experimental studies concerning the dynamic deformation and failure of a unidirectional carbon fiber reinforced plastic(T700/LY113)under compression.The test samples were manufactu...This article presents the results of experimental studies concerning the dynamic deformation and failure of a unidirectional carbon fiber reinforced plastic(T700/LY113)under compression.The test samples were manufactured through the filament winding of flat plates.To establish the strain rate dependencies of the strength and elastic modulus of the material,dynamic tests were carried out using a drop tower,the Split Hopkinson Pressure Bar method,and standard static tests.The samples were loaded both along and perpendicular to the direction of the reinforcing fiber.The applicability of the obtained samples for static and dynamic tests was confirmed through finite elementmodeling and the high-speed imaging of the deformation and failure of samples during testing.As a result of the conducted experimental studies,static and dynamic stress-strain curves,time dependencies of deformation and the stress and strain rates of the samples during compression were obtained.Based on these results,the strain rate dependencies of the strength and elasticity modulus in the strain rate range of 0.001-6001/s are constructed.It is shown that the strain rate significantly affects the strength and deformation characteristics of the unidirectional carbon fiber composites under compression.An increase in the strain rate by 5 orders of magnitude increased the strength and elastic modulus along the fiber direction by 42%and 50%,respectively.Perpendicular loading resulted in a strength and elastic modulus increase by 58%and 50%,respectively.The average strength along the fibers at the largest studied strain rate was about 1000MPa.The obtained results can be used to design structural elements made of polymer composite materials operating under dynamic shock loads,as well as to build models of mechanical behavior and failure criteria of such materials,taking into account the strain rate effects.展开更多
The atom transfer radical polymerization on the mechanism of activator generation by electron transfer (AGET ATRP) of methyl methacrylate (MMA) in N,N-dimethylformamide (DMF) in the presence of the catalytic systems, ...The atom transfer radical polymerization on the mechanism of activator generation by electron transfer (AGET ATRP) of methyl methacrylate (MMA) in N,N-dimethylformamide (DMF) in the presence of the catalytic systems, namely, CCl4-FeCl3-1-acetyl-2-phenylhydrazine (APH) and CCl4-FeCl3-ascorbic acid (AA) is reported. The living feature of this process was confirmed by obtaining well-defined polymers with controlled molecular weight, narrow molecular weight distribution, and a chain-extension experiment. Both reducing agents, an APH as well as an AA, possess the equal kinetic activitis.展开更多
Shelford’s law of tolerance is illustrated by a bell-shaped curve depicting the relationship between environmental factor/factors’intensity and its favorability for species or populations.It is a fundamental basis o...Shelford’s law of tolerance is illustrated by a bell-shaped curve depicting the relationship between environmental factor/factors’intensity and its favorability for species or populations.It is a fundamental basis of ecology when considering the regularities of environment impacts on living systems,and applies in plant biology,agriculture and forestry to manage resistance to environmental limiting factors and to enhance productivity.In recent years,the concept of hormesis has been increasingly used to study the dose-response relationships in living organisms of different complexities,including plants.This requires the need for an analysis of the relationships between the hormetic dose-response model and the classical understanding of plant reactions to environments in terms of Shelford’s law of tolerance.This paper analyses various dimensions of the relationships between the hormetic model and Shelford’s tolerance law curve under the influence of natural environmental factors on plants,which are limiting for plants both in deficiency and excess.The analysis has shown that Shelford’s curve and hormetic model do not contradict but instead complement each other.The hormetic response of plants is localized in the stress zone of the Shelford’s curve when adaptive mechanisms are disabled within the ecological optimum.At the same time,in a species range,the ecological optimum is the most favorable combination of all or at least the most important environmental factors,each of which usually deviates slightly from its optimal value.Adaptive mechanisms cannot be completely disabled in the optimum,and hormesis covers optimum and stress zones.Hormesis can modify the plant tolerance range to environmental factors by preconditioning and makes limits of plant tolerance to environmental factors flexible to a certain extent.In turn,as a result of tolerance range evolution,quantitative characteristics of hormesis(width and magnitude of hormetic zone)as well as the range of stimulating doses,may significantly differ in various plant species and even populations and intra-population groups,including plants at different development stages.Using hormetic preconditioning for managing plant resistance to environmental limiting factors provides an important perspective for increasing the productivity of woody plants in forestry.展开更多
Typology of both ecological (thermo-, hygro-, phytobiotic, biomorphological, etc.) and chorological (zonal, sectoral, regional, etc.) categories as applied to specific Cicadina faunas of Palaearctic is reviewed.
We present an alternative sixteen-component hypercomplex scalar-vector values named “space-time sedenions”, generating associative noncommutative space-time Clifford algebra. The generalization of relativistic quant...We present an alternative sixteen-component hypercomplex scalar-vector values named “space-time sedenions”, generating associative noncommutative space-time Clifford algebra. The generalization of relativistic quantum mechanics and field theory equations based on sedenionic wave function and space-time operators is discussed.展开更多
We have applied Conductive Atomic Force Microscopy (CAFM) to study the microscopic mechanism of resistive switching in the ultrathin (3 - 5 nm) yttria stabilized zirconia (YSZ) films. Using CAFM, we were able to trace...We have applied Conductive Atomic Force Microscopy (CAFM) to study the microscopic mechanism of resistive switching in the ultrathin (3 - 5 nm) yttria stabilized zirconia (YSZ) films. Using CAFM, we were able to trace the growth of the individual conductive filaments, which are considered now to be responsible for the resistive switching effect in the transition metal oxides. The growth of the filaments has been proven to be initiated by the defects in the film material including the ones, which are the concentrators of the electric field, in particular, by the roughness (hillocks) of the film/substrate interface. The electron transport via individual filaments has been studied. Besides the butterfly-type hysteresis in the current-voltage (I-V) curves of the probe- to-sample contact typical for the bipolar resistive switching, we have observed the I-V curves with resonant peaks attributed to the resonant electron tunneling via the localized electron states in the filaments.展开更多
In this paper, developed wireless portable infrared pyrometer with dual channel fiber optic is described. The pyrometer measures surface temperature in wide infrared spectral range of 2 - 25 um. A data processing algo...In this paper, developed wireless portable infrared pyrometer with dual channel fiber optic is described. The pyrometer measures surface temperature in wide infrared spectral range of 2 - 25 um. A data processing algorithm based on the methods of synchronous detection providing展开更多
The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophag...The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophage therapy.In this work,the second near-infrared(NIR-II)fluorescence imaging in vivo tracking of M2 macrophages during a pro-healing therapy in the mice model of rotator cuff injury revealed that the behavior of administrated macrophages was influenced by the timing of their administration.The delayed cell therapy(DCT)group had a longer retention time of injected M2 macrophages in the repairing tissue than that in the immediate cell therapy(ICT)group.Both Keller-Segel model and histological analysis further demonstrated that DCT altered the chemotaxis of M2 macrophages and improved the healing outcome of the repaired structure in comparison with ICT.Our results offer a possible explanation of previous conflicting results on reparative cell therapy and provoke reconsideration of the timing of these therapies.展开更多
Hypoxia causes depression of synaptic plasticity,hyperexcitation of neuronal networks,and the death of specific populations of neurons.However,brief episodes of hypoxia can promote the adaptation of cells.Hypoxic prec...Hypoxia causes depression of synaptic plasticity,hyperexcitation of neuronal networks,and the death of specific populations of neurons.However,brief episodes of hypoxia can promote the adaptation of cells.Hypoxic preconditioning is well manifested in glutamatergic neurons,while this adaptive mechanism is virtually suppressed in GABAergic neurons.Here,we show that brain-derived neurotrophic factor(BDNF) overexpression in neurons enhances the preconditioning effect of brief episodes of hypoxia.The amplitudes of the NMDAR-and AMPARmediated Ca2+ responses of glutamatergic and GABAergic neurons gradually decreased after repetitive brief hypoxia/reoxygenation cycles in cell cultures transduced with the(AAV)-Syn-BDNF-EGFP virus construct.In contrast,the amplitudes of the responses of GABAergic neurons increased in non-transduced cultures after preconditioning.The decrease of the amplitudes in GABAergic neurons indicated the activation of mechanisms of hypoxic preconditioning.Preconditioning suppressed apoptotic or necrotic cell death.This effect was most pronounced in cultures with BDNF overe xpression.Knockdown of BDNF abolished the effect of preconditioning and promoted the death of GABAergic neurons.Moreover,the expression of the anti-apoptotic genes Stat3,Socs3,and Bcl-x1 substantially increased 24 h after hypoxic episodes in the transduced cultures compared to controls.The expression of genes encoding the pro-inflammatory cytokines IL-10 and IL-6 also increased.In turn,the expression of pro-apoptotic(Bax,Casp-3,and Fas) and proinflammatory(IL-1β and TNFα) genes decreased after hypoxic episodes in cultures with BDNF overexpression.Inhibition of vesicular BDNF release abolished its protective action targeting inhibition of the oxygen-glucose deprivation(OGD)-induced [Ca2+]i increase in GABAergic and glutamatergic neurons,thus promoting their death.Bafilomycin A1,Brefeldin A,and tetanus toxin suppressed vesicular release(including BDNF) and shifted the gene expression profile towards excitotoxicity,inflammation,and apoptosis.These inhibitors of vesicular release abolished the protective effects of hypoxic preconditioning in glutamatergic neurons24 h after hypoxia/reoxygenation cycles.This finding indicates a significant contribution of vesicular BDNF release to the development of the mechanisms of hypoxic preconditioning.Thus,our results demonstrate that BDNF plays a pivotal role in the activation and enhancement of the preconditioning effect of brief episodes of hypoxia and promotes tolerance of the most vulnerable populations of GABAergic neurons to hypoxia/ischemia.展开更多
The Silk Road Economic Belt and the 21st-Century Maritime Silk Road(B&R)aims at facilitating the twenty-first Century economic development of China.However,climate change,air quality and related feedbacks are affe...The Silk Road Economic Belt and the 21st-Century Maritime Silk Road(B&R)aims at facilitating the twenty-first Century economic development of China.However,climate change,air quality and related feedbacks are affecting the successful development of the environment and societies in the B&R geographical domain.The most urgent risks related to the atmospheric system,to the land system and to hydrospheric and cryospheric processes are changing climate-air quality interactions,air pollution,changing monsoon dynamics,land degradation,and the melting of Tibetan Plateau glaciers.A framework is needed in which a science and technology-based approach has the critical mass and expertise to identify the main steps toward solutions and is capable to implement this roadmap.The Pan-Eurasian Experiment(PEEX)program,initiated in 2012,aims to resolve science,technology and sustainability questions in the Northern Eurasian region.PEEX is now identifying its science agenda for the B&R region.One fundamental element of the PEEX research agenda is the availability of comprehensive ground-based observations together with Earth observation data.PEEX complements the recently launched international scientific program called Digital Belt and Road(DBAR).PEEX has expertise to coordinate the ground-based observations and initiate new flagship stations,while DBAR provides a big data platform on Earth observation from China and countries along the Belt and Road region.The DBAR and PEEX have joint interests and synergy expertise on monitoring on ecological environment,urbanization,cultural heritages,coastal zones,and arctic cold regions supporting the sustainable development of the Belt and Road region.In this paper we identify the research themes of the PEEX related Silk Road agenda relevant to China and give an overview of the methodological requirements and present the infrastructure requirements needed to carry out large scale research program.展开更多
High-contrast optical imagi ng is achievable using phosphoresce nt labels to suppress the short-lived background due to the optical backscatterand autofluoresce nee.However,the long-lived phosphorescence is generally ...High-contrast optical imagi ng is achievable using phosphoresce nt labels to suppress the short-lived background due to the optical backscatterand autofluoresce nee.However,the long-lived phosphorescence is generally incompatible with high-speed laser-scan ning imaging modalities.Here,we show that upc on versi on nan oparticles of structure NaYF4:Yb co-doped with 8%Tm(8T-UCNP)in combi nation with a commerciallaser-scanning multiphoton microscopy are uniquely suited for labeling biological systems to acquire high-resolution images with the enhancedcon trast.In comparison with many phosphoresce nt labels,the 8T-UCNP emission lifetime of-15μs affords rapid image acquisition.Thehigh-order optical nonlinearity of the 8T-UCNP(n=4,as confirmed experimentally and theoretically)afforded pushing the resolution limitattain able with UCNPs to the diffraction-limit.The contrast enha nceme nt was achieved by suppressing the backgro und using(i)ban dpassspectral filtering of the narrow emission peak of 8T-UCNP at 455-nm,and(ii)time-gating implemented with a time-correlated single-photon counting system that demonstrated the contrast enhancement of>2.5-fold of polyethyle neimine-coated 8T-UCNPs take n up by huma nbreast adeno carcinoma cells SK-BR-3.As a result,discrete 8T-UCNP nan oparticles became clearly observable in the freshly excised splee ntissue of laboratory mice 15-min post in trave nous injectio n of an 8T-UCNP solution.The dem on strated approach paves the way forhigh-contrast,high-resoluti on,and high-speed multiphot on microscopy in challe nging envir onments of i ntense autofluorescence,exogenous staining,and turbidity,as typically occur in intravital imaging.展开更多
Fixed-interval smoothing,as one of the most important types of state estimation,has been concerned in many practical problems especially in the analysis of flight test data.However,the existing sequential filters and ...Fixed-interval smoothing,as one of the most important types of state estimation,has been concerned in many practical problems especially in the analysis of flight test data.However,the existing sequential filters and smoothers usually cannot deal with nonlinear or high-dimensional systems well.A state-of-the-art technique is employed in this study to explore the fixed-interval smoothing problem of a conceptual two-dimensional airfoil model in incompressible flow from noisy measurement data.Therein,the governing equations of the airfoil model are assumed to be known or only partially known.A single objective optimization problem is constructed with the classical Runge–Kutta scheme,and then estimations of the system states,the measurement noise and even the unknown parameters are obtained simultaneously through minimizing the objective function.Effectiveness and feasibility of the method are examined under several simulated measurement data corrupted by different measurement noises.All the obtained results indicate that the introduced algorithm is applicable for the airfoil model with cubic or free-play structural nonlinearity and leads to accurate state and parameter estimations.Besides,it is highly robust to Gaussian white and even more complex heavy-tailed measurement noises.It should be emphasized that the employed algorithm is still effective to high-dimensional nonlinear aeroelastic systems.展开更多
As a promising magneto-optical(MO)material applied in Faraday isolators,magneto-optical ceramics possess excellent comprehensive properties and have attracted much attention these years.Herein,we review the fabricatio...As a promising magneto-optical(MO)material applied in Faraday isolators,magneto-optical ceramics possess excellent comprehensive properties and have attracted much attention these years.Herein,we review the fabrication and properties of magneto-optical ceramics including garnet,sesquioxide,and A_(2)B_(2)O_(7) ceramics.Some of the ceramics have been proved to possess applicable performance,while further studies are still needed for most of the magneto-optical ceramics.Aiming at the application for isolators,the research status,existing problems,and development trends of magneto-optical ceramics are shown and discussed in this review.展开更多
A glycine–nitrate self-propagating high-temperature synthesis(SHS)was developed to produce composite MgO-Gd_(2)O_(3) nanopowders.The X-ray powder diffraction(XRD)analysis confirmed the SHS-product consists of cubic M...A glycine–nitrate self-propagating high-temperature synthesis(SHS)was developed to produce composite MgO-Gd_(2)O_(3) nanopowders.The X-ray powder diffraction(XRD)analysis confirmed the SHS-product consists of cubic MgO and Gd_(2)O_(3) phases with nanometer crystallite size and retains this structure after annealing at temperatures up to 1200℃.Near full dense high IR-transparent composite ceramics were fabricated by spark plasma sintering(SPS)at 1140℃and 60 MPa.The in-line transmittance of 1 mm thick MgO-Gd_(2)O_(3) ceramics exceeded 70%in the range of 4–5 mm and reached a maximum of 77%at a wavelength of 5.3 mm.The measured microhardness HV0.5 of the MgO-Gd2O3 ceramics is 9.5±0.4 GPa,while the fracture toughness(KIC)amounted to 2.0±0.5МPa·m1/2.These characteristics demonstrate that obtained composite MgO-Gd_(2)O_(3) ceramic is a promising material for protective infra-red(IR)windows.展开更多
Resonant light pressure effects can open new degrees of freedom in optical manipulation with microparticles,but they have been traditionally considered as relatively subtle effects.Using a simplified two-dimensional m...Resonant light pressure effects can open new degrees of freedom in optical manipulation with microparticles,but they have been traditionally considered as relatively subtle effects.Using a simplified two-dimensional model of surface electromagnetic waves evanescently coupled to whispering gallery modes(WGMs)in transparent circular cavities,we show that under resonant conditions the peaks of the optical forces can approach theoretical limits imposed by the momentum conservation law on totally absorbing particles.Experimentally,we proved the existence of strong peaks of the optical forces by studying the optical propulsion of dielectric microspheres along tapered microfibers.We observed giant optical propelling velocities,0.45 mm s21 for some of the 15-20 mm polystyrene microspheres in water for guided powers limited at,43 mW.Such velocities exceed previous observations by more than an order of magnitude,thereby providing evidence for the strongly enhanced resonant optical forces.We analyzed the statistical properties of the velocity distribution function measured for slightly disordered(,1%size variations)ensembles of microspheres with mean diameters varying from 3 to 20 mm.These results demonstrate a principal possibility of optical sorting of microspheres with the positions of WGM resonances overlapped at the wavelength of the laser source.They can be used as building blocks of the lossless coupled resonator optical waveguides and various integrated optoelectronics devices.展开更多
At present there is a growing need for tissue engineering products,including the products of scaffold-technologies.Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide m...At present there is a growing need for tissue engineering products,including the products of scaffold-technologies.Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide means of cell transfer for therapeutic treatments and for inducing tissue regeneration.This work presents original hydrogel biopolymer scaffolds based on a blood plasma cryoprecipitate and collagen and formed under conditions of enzymatic hydrolysis.Two differently originated collagens were used for the scaffold formation.During this work the structural and mechanical characteristics of the scaffold were studied.It was found that,depending on the origin of collagen,scaffolds possess differences in their structural and mechanical characteristics.Both types of hydrogel scaffolds have good biocompatibility and provide conditions that maintain the three-dimensional growth of adipose tissue stem cells.Hence,scaffolds based on such a blood plasma cryoprecipitate and collagen have good prospects as cell carriers and can be widely used in regenerative medicine.展开更多
基金supported by the Russian Science Foundation(Grant No.22-14-20001).
文摘In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium.
文摘Metabolic reprogramming is a key feature driving oncogenesis in cancers. Recent studies have revealed that protein metabolism is largely altered in gliomas facilitating its malignant growth. Urea is the end product of nitrogen metabolism which is mainly produced by arginase. The interdependence of arginase and other biochemical mechanisms triggered scientific research interest. This research aimed to investigate the relationships between the urea as the main parameter of protein metabolism and glioma progression. It was also the most pronounced relationship between urea and the level of the nuclear protein Ki-67 as a marker of proliferative activity and O-6-methylguanine-DNA methyltransferase (MGMT), which performs DNA repair. Postoperative material from 20 patients with gliomas of different grades of anaplasia was analyzed.
基金supported by the Ministry of Science and Higher Education of the Russian Federation,state assignment for the Lobachevsky University of Nizhny Novgorod,Project No.0729-2020-0035state assignment for the Institute of Applied Physics RAS,Project No.0030-2021-0012.
文摘It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density,the Doppler frequency shift leads to generation of intense radiation in both the high-frequency(up to the x-ray)and low-frequency(mid-infrared)ranges.The efficiency of energy conversion into the wavelength range above 3μm can reach several percent,which makes it possible to obtain relativistically intense pulses in the mid-infrared range.These pulses are synchronized with high harmonics in the ultraviolet and x-ray ranges,which opens up opportunities for high-precision pump–probe measurements,in particular,laser-induced electron diffraction and transient absorption spectroscopy.
基金This research was supported by the Russian Science Foundation(Grant No.21-19-00563,https://rscf.ru/en/project/21-19-00563/)H.M.Sedighi is grateful to the Research Council of Shahid Chamran University of Ahvaz for its financial support(Grant No.SCU.EM1401.98)。
文摘This article presents the results of experimental studies concerning the dynamic deformation and failure of a unidirectional carbon fiber reinforced plastic(T700/LY113)under compression.The test samples were manufactured through the filament winding of flat plates.To establish the strain rate dependencies of the strength and elastic modulus of the material,dynamic tests were carried out using a drop tower,the Split Hopkinson Pressure Bar method,and standard static tests.The samples were loaded both along and perpendicular to the direction of the reinforcing fiber.The applicability of the obtained samples for static and dynamic tests was confirmed through finite elementmodeling and the high-speed imaging of the deformation and failure of samples during testing.As a result of the conducted experimental studies,static and dynamic stress-strain curves,time dependencies of deformation and the stress and strain rates of the samples during compression were obtained.Based on these results,the strain rate dependencies of the strength and elasticity modulus in the strain rate range of 0.001-6001/s are constructed.It is shown that the strain rate significantly affects the strength and deformation characteristics of the unidirectional carbon fiber composites under compression.An increase in the strain rate by 5 orders of magnitude increased the strength and elastic modulus along the fiber direction by 42%and 50%,respectively.Perpendicular loading resulted in a strength and elastic modulus increase by 58%and 50%,respectively.The average strength along the fibers at the largest studied strain rate was about 1000MPa.The obtained results can be used to design structural elements made of polymer composite materials operating under dynamic shock loads,as well as to build models of mechanical behavior and failure criteria of such materials,taking into account the strain rate effects.
文摘The atom transfer radical polymerization on the mechanism of activator generation by electron transfer (AGET ATRP) of methyl methacrylate (MMA) in N,N-dimethylformamide (DMF) in the presence of the catalytic systems, namely, CCl4-FeCl3-1-acetyl-2-phenylhydrazine (APH) and CCl4-FeCl3-ascorbic acid (AA) is reported. The living feature of this process was confirmed by obtaining well-defined polymers with controlled molecular weight, narrow molecular weight distribution, and a chain-extension experiment. Both reducing agents, an APH as well as an AA, possess the equal kinetic activitis.
文摘Shelford’s law of tolerance is illustrated by a bell-shaped curve depicting the relationship between environmental factor/factors’intensity and its favorability for species or populations.It is a fundamental basis of ecology when considering the regularities of environment impacts on living systems,and applies in plant biology,agriculture and forestry to manage resistance to environmental limiting factors and to enhance productivity.In recent years,the concept of hormesis has been increasingly used to study the dose-response relationships in living organisms of different complexities,including plants.This requires the need for an analysis of the relationships between the hormetic dose-response model and the classical understanding of plant reactions to environments in terms of Shelford’s law of tolerance.This paper analyses various dimensions of the relationships between the hormetic model and Shelford’s tolerance law curve under the influence of natural environmental factors on plants,which are limiting for plants both in deficiency and excess.The analysis has shown that Shelford’s curve and hormetic model do not contradict but instead complement each other.The hormetic response of plants is localized in the stress zone of the Shelford’s curve when adaptive mechanisms are disabled within the ecological optimum.At the same time,in a species range,the ecological optimum is the most favorable combination of all or at least the most important environmental factors,each of which usually deviates slightly from its optimal value.Adaptive mechanisms cannot be completely disabled in the optimum,and hormesis covers optimum and stress zones.Hormesis can modify the plant tolerance range to environmental factors by preconditioning and makes limits of plant tolerance to environmental factors flexible to a certain extent.In turn,as a result of tolerance range evolution,quantitative characteristics of hormesis(width and magnitude of hormetic zone)as well as the range of stimulating doses,may significantly differ in various plant species and even populations and intra-population groups,including plants at different development stages.Using hormetic preconditioning for managing plant resistance to environmental limiting factors provides an important perspective for increasing the productivity of woody plants in forestry.
文摘Typology of both ecological (thermo-, hygro-, phytobiotic, biomorphological, etc.) and chorological (zonal, sectoral, regional, etc.) categories as applied to specific Cicadina faunas of Palaearctic is reviewed.
文摘We present an alternative sixteen-component hypercomplex scalar-vector values named “space-time sedenions”, generating associative noncommutative space-time Clifford algebra. The generalization of relativistic quantum mechanics and field theory equations based on sedenionic wave function and space-time operators is discussed.
文摘We have applied Conductive Atomic Force Microscopy (CAFM) to study the microscopic mechanism of resistive switching in the ultrathin (3 - 5 nm) yttria stabilized zirconia (YSZ) films. Using CAFM, we were able to trace the growth of the individual conductive filaments, which are considered now to be responsible for the resistive switching effect in the transition metal oxides. The growth of the filaments has been proven to be initiated by the defects in the film material including the ones, which are the concentrators of the electric field, in particular, by the roughness (hillocks) of the film/substrate interface. The electron transport via individual filaments has been studied. Besides the butterfly-type hysteresis in the current-voltage (I-V) curves of the probe- to-sample contact typical for the bipolar resistive switching, we have observed the I-V curves with resonant peaks attributed to the resonant electron tunneling via the localized electron states in the filaments.
文摘In this paper, developed wireless portable infrared pyrometer with dual channel fiber optic is described. The pyrometer measures surface temperature in wide infrared spectral range of 2 - 25 um. A data processing algorithm based on the methods of synchronous detection providing
基金the approval of ethics by Ethics Committee of Fudan University(No.202208005Z)supported by the National Natural Science Foundation of China(Nos.81972129,82072521,82111530200)+1 种基金Shanghai Talent Development Funding Scheme(No.2020080)Shanghai Committee of Science and Technology(Nos.22DZ2204900,23ZR1445700)。
文摘The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophage therapy.In this work,the second near-infrared(NIR-II)fluorescence imaging in vivo tracking of M2 macrophages during a pro-healing therapy in the mice model of rotator cuff injury revealed that the behavior of administrated macrophages was influenced by the timing of their administration.The delayed cell therapy(DCT)group had a longer retention time of injected M2 macrophages in the repairing tissue than that in the immediate cell therapy(ICT)group.Both Keller-Segel model and histological analysis further demonstrated that DCT altered the chemotaxis of M2 macrophages and improved the healing outcome of the repaired structure in comparison with ICT.Our results offer a possible explanation of previous conflicting results on reparative cell therapy and provoke reconsideration of the timing of these therapies.
基金supported by grants from the President of Russian Federation(MK-677.2019.4 and MK626.2018.4)by RFBR according to the research project No. 20-04-00053 (vesicular release experiments)+1 种基金Virus construct was developed in the frameworks of the state project “Provision of scientific researches”(6.6379.2017/8.9)Development of ischemialike conditions model and cell viability tests was supported by a grant from the Russian Science Foundation(RSF)(18-75-10071)。
文摘Hypoxia causes depression of synaptic plasticity,hyperexcitation of neuronal networks,and the death of specific populations of neurons.However,brief episodes of hypoxia can promote the adaptation of cells.Hypoxic preconditioning is well manifested in glutamatergic neurons,while this adaptive mechanism is virtually suppressed in GABAergic neurons.Here,we show that brain-derived neurotrophic factor(BDNF) overexpression in neurons enhances the preconditioning effect of brief episodes of hypoxia.The amplitudes of the NMDAR-and AMPARmediated Ca2+ responses of glutamatergic and GABAergic neurons gradually decreased after repetitive brief hypoxia/reoxygenation cycles in cell cultures transduced with the(AAV)-Syn-BDNF-EGFP virus construct.In contrast,the amplitudes of the responses of GABAergic neurons increased in non-transduced cultures after preconditioning.The decrease of the amplitudes in GABAergic neurons indicated the activation of mechanisms of hypoxic preconditioning.Preconditioning suppressed apoptotic or necrotic cell death.This effect was most pronounced in cultures with BDNF overe xpression.Knockdown of BDNF abolished the effect of preconditioning and promoted the death of GABAergic neurons.Moreover,the expression of the anti-apoptotic genes Stat3,Socs3,and Bcl-x1 substantially increased 24 h after hypoxic episodes in the transduced cultures compared to controls.The expression of genes encoding the pro-inflammatory cytokines IL-10 and IL-6 also increased.In turn,the expression of pro-apoptotic(Bax,Casp-3,and Fas) and proinflammatory(IL-1β and TNFα) genes decreased after hypoxic episodes in cultures with BDNF overexpression.Inhibition of vesicular BDNF release abolished its protective action targeting inhibition of the oxygen-glucose deprivation(OGD)-induced [Ca2+]i increase in GABAergic and glutamatergic neurons,thus promoting their death.Bafilomycin A1,Brefeldin A,and tetanus toxin suppressed vesicular release(including BDNF) and shifted the gene expression profile towards excitotoxicity,inflammation,and apoptosis.These inhibitors of vesicular release abolished the protective effects of hypoxic preconditioning in glutamatergic neurons24 h after hypoxia/reoxygenation cycles.This finding indicates a significant contribution of vesicular BDNF release to the development of the mechanisms of hypoxic preconditioning.Thus,our results demonstrate that BDNF plays a pivotal role in the activation and enhancement of the preconditioning effect of brief episodes of hypoxia and promotes tolerance of the most vulnerable populations of GABAergic neurons to hypoxia/ischemia.
基金This work was support from the Academy of Finland Center of Excellence[grant number 307331]the Academy of Finland Academy Professor[grant number 307567],ERC Advanced grant[project ID 742206],Digital Belt&Road of CAS Strategic Priority Research Program[grant number XDA19030402]the Academy of Finland projects ABBA No.280700(2014-2017)and ClimEco No.314798/799(2018-2020)and Russian Science Foundation projects No.15-17-20009(2015-2018)and No.15-17-30009(2015-2018).
文摘The Silk Road Economic Belt and the 21st-Century Maritime Silk Road(B&R)aims at facilitating the twenty-first Century economic development of China.However,climate change,air quality and related feedbacks are affecting the successful development of the environment and societies in the B&R geographical domain.The most urgent risks related to the atmospheric system,to the land system and to hydrospheric and cryospheric processes are changing climate-air quality interactions,air pollution,changing monsoon dynamics,land degradation,and the melting of Tibetan Plateau glaciers.A framework is needed in which a science and technology-based approach has the critical mass and expertise to identify the main steps toward solutions and is capable to implement this roadmap.The Pan-Eurasian Experiment(PEEX)program,initiated in 2012,aims to resolve science,technology and sustainability questions in the Northern Eurasian region.PEEX is now identifying its science agenda for the B&R region.One fundamental element of the PEEX research agenda is the availability of comprehensive ground-based observations together with Earth observation data.PEEX complements the recently launched international scientific program called Digital Belt and Road(DBAR).PEEX has expertise to coordinate the ground-based observations and initiate new flagship stations,while DBAR provides a big data platform on Earth observation from China and countries along the Belt and Road region.The DBAR and PEEX have joint interests and synergy expertise on monitoring on ecological environment,urbanization,cultural heritages,coastal zones,and arctic cold regions supporting the sustainable development of the Belt and Road region.In this paper we identify the research themes of the PEEX related Silk Road agenda relevant to China and give an overview of the methodological requirements and present the infrastructure requirements needed to carry out large scale research program.
文摘High-contrast optical imagi ng is achievable using phosphoresce nt labels to suppress the short-lived background due to the optical backscatterand autofluoresce nee.However,the long-lived phosphorescence is generally incompatible with high-speed laser-scan ning imaging modalities.Here,we show that upc on versi on nan oparticles of structure NaYF4:Yb co-doped with 8%Tm(8T-UCNP)in combi nation with a commerciallaser-scanning multiphoton microscopy are uniquely suited for labeling biological systems to acquire high-resolution images with the enhancedcon trast.In comparison with many phosphoresce nt labels,the 8T-UCNP emission lifetime of-15μs affords rapid image acquisition.Thehigh-order optical nonlinearity of the 8T-UCNP(n=4,as confirmed experimentally and theoretically)afforded pushing the resolution limitattain able with UCNPs to the diffraction-limit.The contrast enha nceme nt was achieved by suppressing the backgro und using(i)ban dpassspectral filtering of the narrow emission peak of 8T-UCNP at 455-nm,and(ii)time-gating implemented with a time-correlated single-photon counting system that demonstrated the contrast enhancement of>2.5-fold of polyethyle neimine-coated 8T-UCNPs take n up by huma nbreast adeno carcinoma cells SK-BR-3.As a result,discrete 8T-UCNP nan oparticles became clearly observable in the freshly excised splee ntissue of laboratory mice 15-min post in trave nous injectio n of an 8T-UCNP solution.The dem on strated approach paves the way forhigh-contrast,high-resoluti on,and high-speed multiphot on microscopy in challe nging envir onments of i ntense autofluorescence,exogenous staining,and turbidity,as typically occur in intravital imaging.
基金supported by the National Natural Sciencs Fundation of China(Grants 12072264.11772255)the Fundamental Research Funds for the Central Universities,the National Key Research and Development Program of China(Grant 2018AAA0102201)+2 种基金the Research Funds for Interdisciplinary Subject of Northwestern Polytechnical University,the Shaanxi Project for Distinguished Young Scholars,the Shaanxi Provincial Key R&D Program(Grants 2O2OKW-013.2019TD-010)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Grant CX201962)J.K.was sup ported by the Russian Ministry of Science and Education Agreement(Grant 075-15-2020-808).
文摘Fixed-interval smoothing,as one of the most important types of state estimation,has been concerned in many practical problems especially in the analysis of flight test data.However,the existing sequential filters and smoothers usually cannot deal with nonlinear or high-dimensional systems well.A state-of-the-art technique is employed in this study to explore the fixed-interval smoothing problem of a conceptual two-dimensional airfoil model in incompressible flow from noisy measurement data.Therein,the governing equations of the airfoil model are assumed to be known or only partially known.A single objective optimization problem is constructed with the classical Runge–Kutta scheme,and then estimations of the system states,the measurement noise and even the unknown parameters are obtained simultaneously through minimizing the objective function.Effectiveness and feasibility of the method are examined under several simulated measurement data corrupted by different measurement noises.All the obtained results indicate that the introduced algorithm is applicable for the airfoil model with cubic or free-play structural nonlinearity and leads to accurate state and parameter estimations.Besides,it is highly robust to Gaussian white and even more complex heavy-tailed measurement noises.It should be emphasized that the employed algorithm is still effective to high-dimensional nonlinear aeroelastic systems.
基金supported by the General Program of Shanghai Natural Science Foundation(Grant No.22ZR1471500)the International Partnership Program of Chinese Academy of Sciences(Grant No.121631KYSB20200039)+1 种基金the International Cooperation Project of Shanghai Science and Technology Commission(Grant No.20520750200)The IChHPS RAS work was supported by the Russian Science Foundation(Grant No.18-13-00355).
文摘As a promising magneto-optical(MO)material applied in Faraday isolators,magneto-optical ceramics possess excellent comprehensive properties and have attracted much attention these years.Herein,we review the fabrication and properties of magneto-optical ceramics including garnet,sesquioxide,and A_(2)B_(2)O_(7) ceramics.Some of the ceramics have been proved to possess applicable performance,while further studies are still needed for most of the magneto-optical ceramics.Aiming at the application for isolators,the research status,existing problems,and development trends of magneto-optical ceramics are shown and discussed in this review.
基金funded by the Russian Science Foundation(Research Project No.19-73-10127)。
文摘A glycine–nitrate self-propagating high-temperature synthesis(SHS)was developed to produce composite MgO-Gd_(2)O_(3) nanopowders.The X-ray powder diffraction(XRD)analysis confirmed the SHS-product consists of cubic MgO and Gd_(2)O_(3) phases with nanometer crystallite size and retains this structure after annealing at temperatures up to 1200℃.Near full dense high IR-transparent composite ceramics were fabricated by spark plasma sintering(SPS)at 1140℃and 60 MPa.The in-line transmittance of 1 mm thick MgO-Gd_(2)O_(3) ceramics exceeded 70%in the range of 4–5 mm and reached a maximum of 77%at a wavelength of 5.3 mm.The measured microhardness HV0.5 of the MgO-Gd2O3 ceramics is 9.5±0.4 GPa,while the fracture toughness(KIC)amounted to 2.0±0.5МPa·m1/2.These characteristics demonstrate that obtained composite MgO-Gd_(2)O_(3) ceramic is a promising material for protective infra-red(IR)windows.
基金The authors thank Ilya Vitebskiy,Vassilios Kovanis and Nicholaos Limberopoulos for stimulating discussions.YL,OVS and VNA gratefully acknowledge support for our work from the US Army Research Office(ARO)under grant W911NF-09-1-0450 and DURIP W911NF-11-1-0406 and W911NF-12-1-0538(John T Prater)from the National Science Foundation(NSF)under grant ECCS-0824067+1 种基金AVM gratefully acknowledges a partial support from the Ministry of Education and Science of the Russian Federation through agreement no.14.B37.21.0892.DCER gratefully acknowledge a partial support from the EU FP7 program through FAST-DOT project(contract no.224338).
文摘Resonant light pressure effects can open new degrees of freedom in optical manipulation with microparticles,but they have been traditionally considered as relatively subtle effects.Using a simplified two-dimensional model of surface electromagnetic waves evanescently coupled to whispering gallery modes(WGMs)in transparent circular cavities,we show that under resonant conditions the peaks of the optical forces can approach theoretical limits imposed by the momentum conservation law on totally absorbing particles.Experimentally,we proved the existence of strong peaks of the optical forces by studying the optical propulsion of dielectric microspheres along tapered microfibers.We observed giant optical propelling velocities,0.45 mm s21 for some of the 15-20 mm polystyrene microspheres in water for guided powers limited at,43 mW.Such velocities exceed previous observations by more than an order of magnitude,thereby providing evidence for the strongly enhanced resonant optical forces.We analyzed the statistical properties of the velocity distribution function measured for slightly disordered(,1%size variations)ensembles of microspheres with mean diameters varying from 3 to 20 mm.These results demonstrate a principal possibility of optical sorting of microspheres with the positions of WGM resonances overlapped at the wavelength of the laser source.They can be used as building blocks of the lossless coupled resonator optical waveguides and various integrated optoelectronics devices.
文摘At present there is a growing need for tissue engineering products,including the products of scaffold-technologies.Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide means of cell transfer for therapeutic treatments and for inducing tissue regeneration.This work presents original hydrogel biopolymer scaffolds based on a blood plasma cryoprecipitate and collagen and formed under conditions of enzymatic hydrolysis.Two differently originated collagens were used for the scaffold formation.During this work the structural and mechanical characteristics of the scaffold were studied.It was found that,depending on the origin of collagen,scaffolds possess differences in their structural and mechanical characteristics.Both types of hydrogel scaffolds have good biocompatibility and provide conditions that maintain the three-dimensional growth of adipose tissue stem cells.Hence,scaffolds based on such a blood plasma cryoprecipitate and collagen have good prospects as cell carriers and can be widely used in regenerative medicine.