In addition to causing discomfort, female mosquitoes introduce disease-carrying viruses and bacteria into the bloodstream of their victims. There are numerous publications describing the uses of sugary mosquito baits ...In addition to causing discomfort, female mosquitoes introduce disease-carrying viruses and bacteria into the bloodstream of their victims. There are numerous publications describing the uses of sugary mosquito baits with promising results. Without temperature control measures however, these methods are mainly useful for only nectar-feeding insects, including male mosquitoes, because the warmth of the blood is a condition for the females to locate their meals. The efforts required to keep the baits fresh against the natural spoiling process make them less attractive or impractical to implement. These experiments address these issues by using warm baits of water, sugar, boric acid, and antibiotics. Overnight, the general areas became clear of blood-sucking female mosquitoes while in numbers, the harmless males concentrated into the immediate vicinities. Control vs. experiment protocol established no other logical explanation for this phenomenon other than that females were attracted and killed by the bait. As expected, there was no female mosquito’s activity in these areas. There weren’t many left to do the work.展开更多
Changes in ocean heat content(OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse...Changes in ocean heat content(OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum.According to IAP/CAS data, the 0–2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ(1 Zetta Joules = 1021Joules);and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins(the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the “salty gets saltier–fresh gets fresher” pattern, also reached its highest level on record in 2022,implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Ni?a event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022.展开更多
In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the...In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the previous work on turbulence by A. Chorin and collaborators to approximate the statistical equilibrium quantities of vortex filaments on a cubic lattice when both an energy and a statistical temperature are involved. Our results confirm that supercritical (smooth, “straight”) vortices have the highest average energy and correspond to negative temperatures in this model. The lowest-energy configurations are folded up and “balled up” to a great extent. The results support A. Chorin’s findings that, in the context of supercritical vortices in a tornadic flow, when such high-energy vortices stretch, they need to fold and transfer energy to the surrounding flow, contributing to tornado maintenance or leading to its genesis. The computations are performed using a Markov Chain Monte Carlo approach with a simple sampling algorithm using local transformations that allow the results to be reliable over a wide range of statistical temperatures, unlike the originally used pivot algorithm that only performs well near infinite temperatures. Efficient ways to compute entropy are discussed and show that a system with supercritical vortices will increase entropy by having these vortices fold and transfer their energy to the surrounding flow.展开更多
The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m oc...The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023.展开更多
The hydrodynamics of aneurysm blood flow is thought to be a critical factor in the evolution and potential rupture of blood vessel walls. The ability to predict which aneurysms may grow or rupture has eluded researche...The hydrodynamics of aneurysm blood flow is thought to be a critical factor in the evolution and potential rupture of blood vessel walls. The ability to predict which aneurysms may grow or rupture has eluded researchers and practicing clinicians. On the other hand, it is expected that local flow patterns, pressures, and wall shear stress play a role in the aneurysm life. In this study, the impact of waveform on these parameters was studied. A baseline waveform, taken from a patient, was applied to an aneurysm geometry. Then the waveform was modified by increasing and decreasing both the flowrates and the cardiac rate. In total, seven cases were investigated. It was found that there were remarkable similarities in the patterns of flow and wall stresses for the cases. These similarities existed throughout the cardiac cycle. It was also found that there was a reduced pressure variable that provides a universal relationship that characterizes all of the cases. It was seen that the maximum wall shear occurs at the neck of the aneurysm and scales with the peak systolic velocity. Finally, it is shown that the flow distribution to the multiple outlets does not appreciably depend on the details of the inlet waveform. All cases had a flow distribution that was within 2%.展开更多
Unprecedented industrialization and urbanization have led to China’s poor energy efficiency. In response, the Chinese government has set goals to reduce energy consumption that may include implementing new tax polici...Unprecedented industrialization and urbanization have led to China’s poor energy efficiency. In response, the Chinese government has set goals to reduce energy consumption that may include implementing new tax policies. In this paper, we investigate the relationship between energy intensity, an indicator that measures the efficiency of energy consumption, and two sources of government revenue in China (i.e., value-added tax (VAT) and corporate income tax). As a case study, we developed a Granger co-integration model to analyze the dynamic relationship of energy intensity, VAT and corporate income tax in the non-ferrous metal industry, Jiangxi Province, China, between 1996 and 2010. Augmented Dickey-Fuller tests were used to validate the model. In our time series analyses, we found when controlling for corporate income tax, a one log unit increase of VAT resulted in a decrease of 1.17 log units of energy intensity. However, when controlling for VAT, a one log unit increase of corporate income tax resulted in an increase of 0.34 log units of energy intensity. Understanding the relationship between energy intensity and taxation in industries that consume high volumes of energy can greatly enhance China’s goal to reduce energy consumption. We believe our findings add to this on-going discussion.展开更多
Scald injuries,which describe burns to living tissue from hot liquids,are a very common injury that occur across geographical,social,economic,and national boundaries.Despite their ubiquitous nature,a complete understa...Scald injuries,which describe burns to living tissue from hot liquids,are a very common injury that occur across geographical,social,economic,and national boundaries.Despite their ubiquitous nature,a complete understanding of the conditions which are required to cause scald burns is not yet available.In addition,clear guidance to medical practitioners is available through various guidelines however in actual situations,the extent of the burn is not fully known and this lack of knowledge complicates care.Here,a comprehensive review is made of the available knowledge of temperatures and scald durations which lead to skin-burn injuries.The range of volumes and liquid temperatures are typical of those found in heated consumer beverages.This review can help medical practitioners design initial treatment protocols and can be used by manufacturers of hot-liquid products to avoid the most severe burns.Next,within the context of this ability to quantify burn depths,a review of current burn treatment guidelines is given.Included in this review is a visual recognition of the extent of burns into the dermal layer as well as decision guidelines for selection of patients which would benefit from referral to a dedicated burn center.It is hoped that by bringing together both the quantified burn-depth information and current treatment guidelines,this review can be used as a resource for persons in the medical,manufacturing,beverage service,and other industries to reduce the human impact of scald injuries.展开更多
Hemodynamics and the interaction between the components of the cardiovascular system are complex and involve a structural/fluid flow interaction. During the cardiac cycle, changes to vascular pressure induce a complia...Hemodynamics and the interaction between the components of the cardiovascular system are complex and involve a structural/fluid flow interaction. During the cardiac cycle, changes to vascular pressure induce a compliant response in the vessels as they cyclically stretch and relax. The compliance influences the fluid flow throughout the system. The interaction is influenced by the disease state of the artery, and in particular, a plaque layer can reduce the compliance. In order to properly quantify the fluid-structural response, it is essential to consider whether the tissue surrounding the artery provides a support to the vessel wall. Here, a series of calculations are provided to determine what role the supporting tissue plays in the vessel wall and how much tissue must be included to properly carry out future fluid-structure calculations. Additionally, we calculate the sensitivity of the compliance to material properties such as the Young’s modulus or to the transmural pressure difference.展开更多
Processes related to the production of vorticity in the forward and rear flank downdrafts and their interaction with the boundary layer are thought to play a role in tornadogenesis. We argue that an inverse energy cas...Processes related to the production of vorticity in the forward and rear flank downdrafts and their interaction with the boundary layer are thought to play a role in tornadogenesis. We argue that an inverse energy cascade is a plausible mechanism for tornadogenesis and tornado maintenance and provides supporting evidence which is both numerical and observational. We apply a three-dimensional vortex gas model to supercritical vortices produced at the surface boundary layer possibly due to interactions of vortices brought to the surface by the rear flank downdraft and also to those related to the forward flank downdraft. Two-dimensional and three-dimensional vortex gas models are discussed, and the three-dimensional vortex gas model of Chorin, developed further by Flandoli and Gubinelli, is proposed as a model for intense small-scale subvortices found in tornadoes and in recent numerical studies by Orf et al. In this paper, the smaller scales are represented by intense, supercritical vortices, which transfer energy to the larger-scale tornadic flows (inverse energy cascade). We address the formation of these vortices as a result of the interaction of the flow with the surface and a boundary layer.展开更多
The focus of this paper is to propose, model, and characterize a means of accelerating the rate of delivery of therapeutic drugs to human tissues. The investigated means is a pressurized, permeable-walled balloon fill...The focus of this paper is to propose, model, and characterize a means of accelerating the rate of delivery of therapeutic drugs to human tissues. The investigated means is a pressurized, permeable-walled balloon filled with a homogeneous mixture of the drug and the carrier fluid. The fluid mixture, driven by pressure, traverses the thickness of the balloon wall through laser-drilled pores. The number and deployment of the pores can be controlled to a high degree of precision. As a consequence, the wall of the balloon can be regarded as a homogeneous porous medium, and the traversing fluid flow can be analyzed by means of porous media models. When the balloon is in intimate contact with the surface of a tissue bed, the therapeutic fluid flows in series as it passes through the balloon wall and penetrates the tissue. The flow rate can be controlled by proper selection of the balloon permeability, the viscosity of the flowing medium, and the pressure internal to the balloon. The delivered concentration of the drug was predicted by coupling the present balloon-focused theory with a previously developed tissue-bed model that includes both diffusion and advection processes. The tribologic interaction of the pressurized balloon with an artery wall was investigated experimentally to assess the possible formation of aneurysms.展开更多
Long-term, body-adhered medical devices rely on an adhesive interface to maintain contact with the patient. The greatest threat to on-body adhesion is mechanical stress imparted on the medical device. Several factors ...Long-term, body-adhered medical devices rely on an adhesive interface to maintain contact with the patient. The greatest threat to on-body adhesion is mechanical stress imparted on the medical device. Several factors contribute to the ability of the device to withstand such stresses, such as the mechanical design, shape, and size of the device. This analysis investigates the impact that design changes to the device have on the stress and strain experienced by the system when acted on by a stressor. The analysis also identifies the design changes that are most effective at reducing the stress and strain. An explicit dynamic finite element analysis method was used to simulate several design iterations and a regression analysis was performed to quantify the relationship between design and resultant stress and strain. The shape, height, size, and taper of the medical device were modified, and the results indicate that, to reduce stress and strain in the system, the device should resemble a square in shape, be short in height, and small in size with a large taper. The square shape experienced 17.5% less stress compared to the next best performing shape. A 10% reduction in device height resulted in a 21% reduction in stress and 24% reduction in strain. A 20% reduction in device size caused a 7% reduction in stress and 2% reduction in strain. A 20% increase in device taper size led to a negligible reduction in stress and a 6% reduction in strain. The height of the device had the greatest impact on the resultant stress and strain.展开更多
Ocean heat content(OHC)change contributes substantially to global sea level rise,so it is a vital task for the climate research community to estimate historical OHC.While there are large uncertainties regarding its va...Ocean heat content(OHC)change contributes substantially to global sea level rise,so it is a vital task for the climate research community to estimate historical OHC.While there are large uncertainties regarding its value,in this study,the authors discuss recent progress to reduce the errors in OHC estimates,including corrections to the systematic biases in expendable bathythermograph(XBT)data,filling gaps in the data,and choosing a proper climatology.These improvements lead to a better reconstruction of historical upper(0–700 m)OHC change,which is presented in this study as the Institute of Atmospheric Physics(IAP)version of historical upper OHC assessment.Challenges still remain;for example,there is still no general consensus on mapping methods.Furthermore,we show that Coupled Model Intercomparison Project,Phase 5(CMIP5)simulations have limited ability in capturing the interannual and decadal variability of historical upper OHC changes during the past 45 years.展开更多
Human-emitted greenhouse gases(GHGs)have resulted in a long-term and unequivocal warming of the planet(IPCC,2019).More than 90%of the excess heat is stored within the world's oceans,where it accumulates and causes...Human-emitted greenhouse gases(GHGs)have resulted in a long-term and unequivocal warming of the planet(IPCC,2019).More than 90%of the excess heat is stored within the world's oceans,where it accumulates and causes increases in ocean temperature(Rhein et al.,2013;Abram et al.,2019).展开更多
The ocean’s thermal inertia is a major contributor to irreversible ocean changes exceeding time scales that matter to human society.This fact is a challenge to societies as they prepare for the consequences of climat...The ocean’s thermal inertia is a major contributor to irreversible ocean changes exceeding time scales that matter to human society.This fact is a challenge to societies as they prepare for the consequences of climate change,especially with respect to the ocean.Here the authors review the requirements for human actions from the ocean’s perspective.In the near term(∼2030),goals such as the United Nations Sustainable Development Goals(SDGs)will be critical.Over longer times(∼2050–2060 and beyond),global carbon neutrality targets may be met as countries continue to work toward reducing emissions.Both adaptation and mitigation plans need to be fully implemented in the interim,and the Global Ocean Observation System should be sustained so that changes can be continuously monitored.In the longer-term(after∼2060),slow emerging changes such as deep ocean warming and sea level rise are committed to continue even in the scenario where net zero emissions are reached.Thus,climate actions have to extend to time scales of hundreds of years.At these time scales,preparation for“high impact,low probability”risks—such as an abrupt showdown of Atlantic Meridional Overturning Circulation,ecosystem change,or irreversible ice sheet loss—should be fully integrated into long-term planning.展开更多
The increased concentration of greenhouse gases in the atmosphere from human activities traps heat within the climate system and increases ocean heat content(OHC). Here, we provide the first analysis of recent OHC cha...The increased concentration of greenhouse gases in the atmosphere from human activities traps heat within the climate system and increases ocean heat content(OHC). Here, we provide the first analysis of recent OHC changes through 2021 from two international groups. The world ocean, in 2021, was the hottest ever recorded by humans, and the 2021 annual OHC value is even higher than last year’s record value by 14 ± 11 ZJ(1 zetta J = 1021 J) using the IAP/CAS dataset and by16 ± 10 ZJ using NCEI/NOAA dataset. The long-term ocean warming is larger in the Atlantic and Southern Oceans than in other regions and is mainly attributed, via climate model simulations, to an increase in anthropogenic greenhouse gas concentrations. The year-to-year variation of OHC is primarily tied to the El Nino-Southern Oscillation(ENSO). In the seven maritime domains of the Indian, Tropical Atlantic, North Atlantic, Northwest Pacific, North Pacific, Southern oceans,and the Mediterranean Sea, robust warming is observed but with distinct inter-annual to decadal variability. Four out of seven domains showed record-high heat content in 2021. The anomalous global and regional ocean warming established in this study should be incorporated into climate risk assessments, adaptation, and mitigation.展开更多
The increasing heat-trapping gases emitted by human activities into the atmosphere produce an energy imbalance between incoming solar radiation and outgoing longwave radiation that leads to global heating(Rhein et al....The increasing heat-trapping gases emitted by human activities into the atmosphere produce an energy imbalance between incoming solar radiation and outgoing longwave radiation that leads to global heating(Rhein et al.,2013;Trenberth et al.,2014;von Schuckmann et al.,2016).The vast majority of global warming heat ends up deposited in the world’s oceans,and ocean heat content(OHC)change is one of the best—if not the best—metric for climate change(Cheng et al.,2019).In 2018,continued record heat was measured in the Earth’s climate system.In fact,2018 has set a new record of ocean heating,surpassing 2017,which was the previous warmest year ever recorded(Cheng et al.,2018)(Fig.1).展开更多
The long-term warming of the ocean is a critical indicator of both the past and present state of the climate system. It also provides insights about the changes to come, owing to the persistence of both decadal variat...The long-term warming of the ocean is a critical indicator of both the past and present state of the climate system. It also provides insights about the changes to come, owing to the persistence of both decadal variations and secular trends,which the ocean records extremely well(Hansen et al., 2011;IPCC, 2013;Rhein et al., 2013;Trenberth et al., 2016;Abram et al., 2019).展开更多
This paper includes a comprehensive assessment of 40 models from the Coupled Model Intercomparison Project phase 5(CMIP5)and 33 models from the CMIP phase 6(CMIP6)to determine the climatological and seasonal variation...This paper includes a comprehensive assessment of 40 models from the Coupled Model Intercomparison Project phase 5(CMIP5)and 33 models from the CMIP phase 6(CMIP6)to determine the climatological and seasonal variation of ocean salinity from the surface to 2000 m.The general pattern of the ocean salinity climatology can be simulated by both the CMIP5 and CMIP6 models from the surface to 2000-m depth.However,this study shows an increased fresh bias in the surface and subsurface salinity in the CMIP6 multimodel mean,with a global average of−0.44 g kg^(−1) for the sea surface salinity(SSS)and−0.26 g kg^(−1) for the 0-1000-m averaged salinity(S1000)compared with the CMIP5 multimodel mean(−0.25 g kg^(−1) for the SSS and−0.07 g kg^(−1) for the S1000).In terms of the seasonal variation,both CMIP6 and CMIP5 models show positive(negative)anomalies in the first(second)half of the year in the global average SSS and S1000.The model-simulated variation in SSS is consistent with the observations,but not for S1000,suggesting a substantial uncertainty in simulating and understanding the seasonal variation in subsurface salinity.The CMIP5 and CMIP6 models overestimate the magnitude of the seasonal variation of the SSS in the tropics in the region 20°S-20°N but underestimate the magnitude of the seasonal change in S1000 in the Atlantic and Indian oceans.These assessments show new features of the model errors in simulating ocean salinity and support further studies of the global hydrological cycle.展开更多
A degree elevation formula for multivariate simplex splines was given by Micchelli and extended to hold for multivariate Dirichlet splines in [8]. We report similar formulae for multivariate cone splines and box splin...A degree elevation formula for multivariate simplex splines was given by Micchelli and extended to hold for multivariate Dirichlet splines in [8]. We report similar formulae for multivariate cone splines and box splines. To this end, we utilize a relation due to Dahmen and Micchelli that connects box splines and cone splines and a degree reduction formula given by Cohen, Lyche, and Riesenfeld in [2].展开更多
This study presents a comparison of the drug dispersion capability of various catheters which can be used to inject medication or stem cells into the arterial system. The study was carried out by the use of numerical ...This study presents a comparison of the drug dispersion capability of various catheters which can be used to inject medication or stem cells into the arterial system. The study was carried out by the use of numerical simulation so that various geometric and physical operating parameters could be investigated. The blood was modeled with a power-law viscosity and the medication had two levels of viscosity to represent upper and lower bounds expected in practice. Two different medication flowrates were also incorporated into the study. Finally, the impact of an inflated balloon up-stream of the injection was studied. The artery was simply modeled as a straight circular tube with the catheters concentrically positioned. It was found that in some cases, dispersion was improved by use of a multi-lumen device, particularly when an upstream balloon was employed to regulate blood flow and drug residence time. In other cases, the dispersion from the single-lumen device was superior. Another finding was that the multi-lumen device had a reduced hydraulic resistance to blood flow, compared to the single-lumen device when an upstream balloon was inflated.展开更多
文摘In addition to causing discomfort, female mosquitoes introduce disease-carrying viruses and bacteria into the bloodstream of their victims. There are numerous publications describing the uses of sugary mosquito baits with promising results. Without temperature control measures however, these methods are mainly useful for only nectar-feeding insects, including male mosquitoes, because the warmth of the blood is a condition for the females to locate their meals. The efforts required to keep the baits fresh against the natural spoiling process make them less attractive or impractical to implement. These experiments address these issues by using warm baits of water, sugar, boric acid, and antibiotics. Overnight, the general areas became clear of blood-sucking female mosquitoes while in numbers, the harmless males concentrated into the immediate vicinities. Control vs. experiment protocol established no other logical explanation for this phenomenon other than that females were attracted and killed by the bait. As expected, there was no female mosquito’s activity in these areas. There weren’t many left to do the work.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42122046 and 42076202)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42040402)+4 种基金sponsored by the US National Science Foundationsupported by NASA Awards 80NSSC17K0565 and 80NSSC22K0046by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1947282supported by NOAA (Grant No. NA19NES4320002 to CISESS-MD at the University of Maryland)supported by the Young Talent Support Project of Guangzhou Association for Science and Technology。
文摘Changes in ocean heat content(OHC), salinity, and stratification provide critical indicators for changes in Earth’s energy and water cycles. These cycles have been profoundly altered due to the emission of greenhouse gasses and other anthropogenic substances by human activities, driving pervasive changes in Earth’s climate system. In 2022, the world’s oceans, as given by OHC, were again the hottest in the historical record and exceeded the previous 2021 record maximum.According to IAP/CAS data, the 0–2000 m OHC in 2022 exceeded that of 2021 by 10.9 ± 8.3 ZJ(1 Zetta Joules = 1021Joules);and according to NCEI/NOAA data, by 9.1 ± 8.7 ZJ. Among seven regions, four basins(the North Pacific, North Atlantic, the Mediterranean Sea, and southern oceans) recorded their highest OHC since the 1950s. The salinity-contrast index, a quantification of the “salty gets saltier–fresh gets fresher” pattern, also reached its highest level on record in 2022,implying continued amplification of the global hydrological cycle. Regional OHC and salinity changes in 2022 were dominated by a strong La Ni?a event. Global upper-ocean stratification continued its increasing trend and was among the top seven in 2022.
文摘In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the previous work on turbulence by A. Chorin and collaborators to approximate the statistical equilibrium quantities of vortex filaments on a cubic lattice when both an energy and a statistical temperature are involved. Our results confirm that supercritical (smooth, “straight”) vortices have the highest average energy and correspond to negative temperatures in this model. The lowest-energy configurations are folded up and “balled up” to a great extent. The results support A. Chorin’s findings that, in the context of supercritical vortices in a tornadic flow, when such high-energy vortices stretch, they need to fold and transfer energy to the surrounding flow, contributing to tornado maintenance or leading to its genesis. The computations are performed using a Markov Chain Monte Carlo approach with a simple sampling algorithm using local transformations that allow the results to be reliable over a wide range of statistical temperatures, unlike the originally used pivot algorithm that only performs well near infinite temperatures. Efficient ways to compute entropy are discussed and show that a system with supercritical vortices will increase entropy by having these vortices fold and transfer their energy to the surrounding flow.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42076202, 42122046, 42206208 and 42261134536)the Open Research Cruise NORC2022-10+NORC2022-303 supported by NSFC shiptime Sharing Projects 42149910+7 种基金the new Cornerstone Science Foundation through the XPLORER PRIZE, DAMO Academy Young Fellow, Youth Innovation Promotion Association, Chinese Academy of SciencesNational Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab)sponsored by the US National Science Foundationsupported by NASA Awards 80NSSC17K0565, 80NSSC21K1191, and 80NSSC22K0046by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1947282supported by NOAA (Grant No. NA19NES4320002 to CISESS-MD at the University of Maryland)supported by the Young Talent Support Project of Guangzhou Association for Science and Technologyfunded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in agreement between INGV, ENEA, and GNV SpA shipping company that provides hospitality on its commercial vessels
文摘The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023.
文摘The hydrodynamics of aneurysm blood flow is thought to be a critical factor in the evolution and potential rupture of blood vessel walls. The ability to predict which aneurysms may grow or rupture has eluded researchers and practicing clinicians. On the other hand, it is expected that local flow patterns, pressures, and wall shear stress play a role in the aneurysm life. In this study, the impact of waveform on these parameters was studied. A baseline waveform, taken from a patient, was applied to an aneurysm geometry. Then the waveform was modified by increasing and decreasing both the flowrates and the cardiac rate. In total, seven cases were investigated. It was found that there were remarkable similarities in the patterns of flow and wall stresses for the cases. These similarities existed throughout the cardiac cycle. It was also found that there was a reduced pressure variable that provides a universal relationship that characterizes all of the cases. It was seen that the maximum wall shear occurs at the neck of the aneurysm and scales with the peak systolic velocity. Finally, it is shown that the flow distribution to the multiple outlets does not appreciably depend on the details of the inlet waveform. All cases had a flow distribution that was within 2%.
文摘Unprecedented industrialization and urbanization have led to China’s poor energy efficiency. In response, the Chinese government has set goals to reduce energy consumption that may include implementing new tax policies. In this paper, we investigate the relationship between energy intensity, an indicator that measures the efficiency of energy consumption, and two sources of government revenue in China (i.e., value-added tax (VAT) and corporate income tax). As a case study, we developed a Granger co-integration model to analyze the dynamic relationship of energy intensity, VAT and corporate income tax in the non-ferrous metal industry, Jiangxi Province, China, between 1996 and 2010. Augmented Dickey-Fuller tests were used to validate the model. In our time series analyses, we found when controlling for corporate income tax, a one log unit increase of VAT resulted in a decrease of 1.17 log units of energy intensity. However, when controlling for VAT, a one log unit increase of corporate income tax resulted in an increase of 0.34 log units of energy intensity. Understanding the relationship between energy intensity and taxation in industries that consume high volumes of energy can greatly enhance China’s goal to reduce energy consumption. We believe our findings add to this on-going discussion.
文摘Scald injuries,which describe burns to living tissue from hot liquids,are a very common injury that occur across geographical,social,economic,and national boundaries.Despite their ubiquitous nature,a complete understanding of the conditions which are required to cause scald burns is not yet available.In addition,clear guidance to medical practitioners is available through various guidelines however in actual situations,the extent of the burn is not fully known and this lack of knowledge complicates care.Here,a comprehensive review is made of the available knowledge of temperatures and scald durations which lead to skin-burn injuries.The range of volumes and liquid temperatures are typical of those found in heated consumer beverages.This review can help medical practitioners design initial treatment protocols and can be used by manufacturers of hot-liquid products to avoid the most severe burns.Next,within the context of this ability to quantify burn depths,a review of current burn treatment guidelines is given.Included in this review is a visual recognition of the extent of burns into the dermal layer as well as decision guidelines for selection of patients which would benefit from referral to a dedicated burn center.It is hoped that by bringing together both the quantified burn-depth information and current treatment guidelines,this review can be used as a resource for persons in the medical,manufacturing,beverage service,and other industries to reduce the human impact of scald injuries.
文摘Hemodynamics and the interaction between the components of the cardiovascular system are complex and involve a structural/fluid flow interaction. During the cardiac cycle, changes to vascular pressure induce a compliant response in the vessels as they cyclically stretch and relax. The compliance influences the fluid flow throughout the system. The interaction is influenced by the disease state of the artery, and in particular, a plaque layer can reduce the compliance. In order to properly quantify the fluid-structural response, it is essential to consider whether the tissue surrounding the artery provides a support to the vessel wall. Here, a series of calculations are provided to determine what role the supporting tissue plays in the vessel wall and how much tissue must be included to properly carry out future fluid-structure calculations. Additionally, we calculate the sensitivity of the compliance to material properties such as the Young’s modulus or to the transmural pressure difference.
文摘Processes related to the production of vorticity in the forward and rear flank downdrafts and their interaction with the boundary layer are thought to play a role in tornadogenesis. We argue that an inverse energy cascade is a plausible mechanism for tornadogenesis and tornado maintenance and provides supporting evidence which is both numerical and observational. We apply a three-dimensional vortex gas model to supercritical vortices produced at the surface boundary layer possibly due to interactions of vortices brought to the surface by the rear flank downdraft and also to those related to the forward flank downdraft. Two-dimensional and three-dimensional vortex gas models are discussed, and the three-dimensional vortex gas model of Chorin, developed further by Flandoli and Gubinelli, is proposed as a model for intense small-scale subvortices found in tornadoes and in recent numerical studies by Orf et al. In this paper, the smaller scales are represented by intense, supercritical vortices, which transfer energy to the larger-scale tornadic flows (inverse energy cascade). We address the formation of these vortices as a result of the interaction of the flow with the surface and a boundary layer.
文摘The focus of this paper is to propose, model, and characterize a means of accelerating the rate of delivery of therapeutic drugs to human tissues. The investigated means is a pressurized, permeable-walled balloon filled with a homogeneous mixture of the drug and the carrier fluid. The fluid mixture, driven by pressure, traverses the thickness of the balloon wall through laser-drilled pores. The number and deployment of the pores can be controlled to a high degree of precision. As a consequence, the wall of the balloon can be regarded as a homogeneous porous medium, and the traversing fluid flow can be analyzed by means of porous media models. When the balloon is in intimate contact with the surface of a tissue bed, the therapeutic fluid flows in series as it passes through the balloon wall and penetrates the tissue. The flow rate can be controlled by proper selection of the balloon permeability, the viscosity of the flowing medium, and the pressure internal to the balloon. The delivered concentration of the drug was predicted by coupling the present balloon-focused theory with a previously developed tissue-bed model that includes both diffusion and advection processes. The tribologic interaction of the pressurized balloon with an artery wall was investigated experimentally to assess the possible formation of aneurysms.
文摘Long-term, body-adhered medical devices rely on an adhesive interface to maintain contact with the patient. The greatest threat to on-body adhesion is mechanical stress imparted on the medical device. Several factors contribute to the ability of the device to withstand such stresses, such as the mechanical design, shape, and size of the device. This analysis investigates the impact that design changes to the device have on the stress and strain experienced by the system when acted on by a stressor. The analysis also identifies the design changes that are most effective at reducing the stress and strain. An explicit dynamic finite element analysis method was used to simulate several design iterations and a regression analysis was performed to quantify the relationship between design and resultant stress and strain. The shape, height, size, and taper of the medical device were modified, and the results indicate that, to reduce stress and strain in the system, the device should resemble a square in shape, be short in height, and small in size with a large taper. The square shape experienced 17.5% less stress compared to the next best performing shape. A 10% reduction in device height resulted in a 21% reduction in stress and 24% reduction in strain. A 20% reduction in device size caused a 7% reduction in stress and 2% reduction in strain. A 20% increase in device taper size led to a negligible reduction in stress and a 6% reduction in strain. The height of the device had the greatest impact on the resultant stress and strain.
基金supported by the Chinese Academy of Sciences project entitled"Western Pacific Ocean System:Structure,Dynamics and Consequences"(Grant No.XDA11010405)the National Natural Science Foundation of China(Grant No.41476016)
文摘Ocean heat content(OHC)change contributes substantially to global sea level rise,so it is a vital task for the climate research community to estimate historical OHC.While there are large uncertainties regarding its value,in this study,the authors discuss recent progress to reduce the errors in OHC estimates,including corrections to the systematic biases in expendable bathythermograph(XBT)data,filling gaps in the data,and choosing a proper climatology.These improvements lead to a better reconstruction of historical upper(0–700 m)OHC change,which is presented in this study as the Institute of Atmospheric Physics(IAP)version of historical upper OHC assessment.Challenges still remain;for example,there is still no general consensus on mapping methods.Furthermore,we show that Coupled Model Intercomparison Project,Phase 5(CMIP5)simulations have limited ability in capturing the interannual and decadal variability of historical upper OHC changes during the past 45 years.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2016YFC1401806 and 2017YFA0603202)sponsored by the US National Science Foundation+2 种基金funded in partnership with the NOAA OAR Ocean Observing and Monitoring Divisionpartially supported by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1844590supported in part by NSF Award #AGS-1419571
文摘Human-emitted greenhouse gases(GHGs)have resulted in a long-term and unequivocal warming of the planet(IPCC,2019).More than 90%of the excess heat is stored within the world's oceans,where it accumulates and causes increases in ocean temperature(Rhein et al.,2013;Abram et al.,2019).
基金L.Cheng acknowledges financial supports from the Strategic Priority Research Program of the Chinese Academy of Sciences[grant munber XDB42040402]the National Natural Science Foundation of China[grant numbers 42122046 and 42076202]The National Center for Atmospheric Research is sponsored by the National Science Foundation.
文摘The ocean’s thermal inertia is a major contributor to irreversible ocean changes exceeding time scales that matter to human society.This fact is a challenge to societies as they prepare for the consequences of climate change,especially with respect to the ocean.Here the authors review the requirements for human actions from the ocean’s perspective.In the near term(∼2030),goals such as the United Nations Sustainable Development Goals(SDGs)will be critical.Over longer times(∼2050–2060 and beyond),global carbon neutrality targets may be met as countries continue to work toward reducing emissions.Both adaptation and mitigation plans need to be fully implemented in the interim,and the Global Ocean Observation System should be sustained so that changes can be continuously monitored.In the longer-term(after∼2060),slow emerging changes such as deep ocean warming and sea level rise are committed to continue even in the scenario where net zero emissions are reached.Thus,climate actions have to extend to time scales of hundreds of years.At these time scales,preparation for“high impact,low probability”risks—such as an abrupt showdown of Atlantic Meridional Overturning Circulation,ecosystem change,or irreversible ice sheet loss—should be fully integrated into long-term planning.
基金supported by the National Natural Science Foundation of China(Grant No.42122046,42076202)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42040402)+5 种基金National Natural Science Foundation of China(Grant No.42076202)National Key R&D Program of China(Grant No.2017YFA0603202)Key Deployment Project of Centre for Ocean Mega-Research of Science,CAS(Grant Nos.COMS2019Q01 and COMS2019Q07)NCAR is sponsored by the US National Science Foundationsupported by NASA Award 80NSSC17K0565the Regional and Global Model Analysis(RGMA)component of the Earth and Environmental System Modeling Program of the U.S.Department of Energy’s Office of Biological&Environmental Research(BER)via National Science Foundation IA 1844590。
文摘The increased concentration of greenhouse gases in the atmosphere from human activities traps heat within the climate system and increases ocean heat content(OHC). Here, we provide the first analysis of recent OHC changes through 2021 from two international groups. The world ocean, in 2021, was the hottest ever recorded by humans, and the 2021 annual OHC value is even higher than last year’s record value by 14 ± 11 ZJ(1 zetta J = 1021 J) using the IAP/CAS dataset and by16 ± 10 ZJ using NCEI/NOAA dataset. The long-term ocean warming is larger in the Atlantic and Southern Oceans than in other regions and is mainly attributed, via climate model simulations, to an increase in anthropogenic greenhouse gas concentrations. The year-to-year variation of OHC is primarily tied to the El Nino-Southern Oscillation(ENSO). In the seven maritime domains of the Indian, Tropical Atlantic, North Atlantic, Northwest Pacific, North Pacific, Southern oceans,and the Mediterranean Sea, robust warming is observed but with distinct inter-annual to decadal variability. Four out of seven domains showed record-high heat content in 2021. The anomalous global and regional ocean warming established in this study should be incorporated into climate risk assessments, adaptation, and mitigation.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0603202 and 2016YFC1401705)
文摘The increasing heat-trapping gases emitted by human activities into the atmosphere produce an energy imbalance between incoming solar radiation and outgoing longwave radiation that leads to global heating(Rhein et al.,2013;Trenberth et al.,2014;von Schuckmann et al.,2016).The vast majority of global warming heat ends up deposited in the world’s oceans,and ocean heat content(OHC)change is one of the best—if not the best—metric for climate change(Cheng et al.,2019).In 2018,continued record heat was measured in the Earth’s climate system.In fact,2018 has set a new record of ocean heating,surpassing 2017,which was the previous warmest year ever recorded(Cheng et al.,2018)(Fig.1).
基金supported by the National Key R&D Program of China (Grant No. 2017YFA0603202)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42040402)+4 种基金Key Deployment Project of Centre for Ocean Mega-Research of Science, CAS (Grant No. COMS2019Q01)sponsored by the US National Science Foundationsupported by NASA Award 80NSSC17K0565the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research (BER) via National Science Foundation IA 1844590partially supported by NOAA (grant NA14NES4320003 to CISESS-MD at the University of Maryland)。
文摘The long-term warming of the ocean is a critical indicator of both the past and present state of the climate system. It also provides insights about the changes to come, owing to the persistence of both decadal variations and secular trends,which the ocean records extremely well(Hansen et al., 2011;IPCC, 2013;Rhein et al., 2013;Trenberth et al., 2016;Abram et al., 2019).
基金supported by the National Natural Science Foundation of China(Grant No.42076202)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB42040402).
文摘This paper includes a comprehensive assessment of 40 models from the Coupled Model Intercomparison Project phase 5(CMIP5)and 33 models from the CMIP phase 6(CMIP6)to determine the climatological and seasonal variation of ocean salinity from the surface to 2000 m.The general pattern of the ocean salinity climatology can be simulated by both the CMIP5 and CMIP6 models from the surface to 2000-m depth.However,this study shows an increased fresh bias in the surface and subsurface salinity in the CMIP6 multimodel mean,with a global average of−0.44 g kg^(−1) for the sea surface salinity(SSS)and−0.26 g kg^(−1) for the 0-1000-m averaged salinity(S1000)compared with the CMIP5 multimodel mean(−0.25 g kg^(−1) for the SSS and−0.07 g kg^(−1) for the S1000).In terms of the seasonal variation,both CMIP6 and CMIP5 models show positive(negative)anomalies in the first(second)half of the year in the global average SSS and S1000.The model-simulated variation in SSS is consistent with the observations,but not for S1000,suggesting a substantial uncertainty in simulating and understanding the seasonal variation in subsurface salinity.The CMIP5 and CMIP6 models overestimate the magnitude of the seasonal variation of the SSS in the tropics in the region 20°S-20°N but underestimate the magnitude of the seasonal change in S1000 in the Atlantic and Indian oceans.These assessments show new features of the model errors in simulating ocean salinity and support further studies of the global hydrological cycle.
文摘A degree elevation formula for multivariate simplex splines was given by Micchelli and extended to hold for multivariate Dirichlet splines in [8]. We report similar formulae for multivariate cone splines and box splines. To this end, we utilize a relation due to Dahmen and Micchelli that connects box splines and cone splines and a degree reduction formula given by Cohen, Lyche, and Riesenfeld in [2].
文摘This study presents a comparison of the drug dispersion capability of various catheters which can be used to inject medication or stem cells into the arterial system. The study was carried out by the use of numerical simulation so that various geometric and physical operating parameters could be investigated. The blood was modeled with a power-law viscosity and the medication had two levels of viscosity to represent upper and lower bounds expected in practice. Two different medication flowrates were also incorporated into the study. Finally, the impact of an inflated balloon up-stream of the injection was studied. The artery was simply modeled as a straight circular tube with the catheters concentrically positioned. It was found that in some cases, dispersion was improved by use of a multi-lumen device, particularly when an upstream balloon was employed to regulate blood flow and drug residence time. In other cases, the dispersion from the single-lumen device was superior. Another finding was that the multi-lumen device had a reduced hydraulic resistance to blood flow, compared to the single-lumen device when an upstream balloon was inflated.