Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods...Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.展开更多
In the present study, investigation of extracorporeal shock wave lithotripsy in Zakho City for breakdown kidney and ureteral stones has been carried out. The data were collected from the center of breakdown kidney sto...In the present study, investigation of extracorporeal shock wave lithotripsy in Zakho City for breakdown kidney and ureteral stones has been carried out. The data were collected from the center of breakdown kidney stones in Zakho hospital. A total of 34 patients (25 male and 9 female) of ages ranged from 20 - 60 years were treated with ESWL. The patient harboring 24 renal stones and 10 ureteral stones of size ranged from 7 to 23 mm of almost patients are 8 mm and composed of calcium oxalate. The study has been conducted taking in to consideration the parameters (type, sizes, composition and location of stone as well as region and ages of patients, also power, number of shock wave and session). The results show that the number of shock wave decreases nearly exponentially with the ages of patients for calcium oxalate stone of size 8 mm under constant power 4 watt while it tends to increase according to increasing stones size for the patients of ages 20 - 30 years. The size of calcium oxalate stones decreases nearly exponentially with the patients’ ages for workers in Zakho city. Also for same size 8 mm of (calcium, phosphate, and oxalate) stones and different regions of zakho city, the number of shock waves decreases according to increasing ages of patients. Contrary to that for certain size of stones 8 mm, the number of shock wave starts to increase from uric acid to maximum value for calcium oxalate stone for the adult patients of age’s 22 up to 30 years. However for elders ages 30 - 60 years and different regions, the size of renal and ureteric stones increases from the minimum value for calcium, phosphate, oxalate to maximum value for calcium oxalate stone only. Uric acid stone requires minimum power to break, while the calcium oxalate needs maximum power to fragment due to its hardness composition. Later number of session of shock wave required for crushing each stones size increases according to increasing its size while its variation due to enhancing patients ages for calcium oxalate of size 8 mm results in nearly a decreasing exponential behavior.展开更多
With the widespread use of the internet,there is an increasing need to ensure the security and privacy of transmitted data.This has led to an intensified focus on the study of video steganography,which is a technique ...With the widespread use of the internet,there is an increasing need to ensure the security and privacy of transmitted data.This has led to an intensified focus on the study of video steganography,which is a technique that hides data within a video cover to avoid detection.The effectiveness of any steganography method depends on its ability to embed data without altering the original video’s quality while maintaining high efficiency.This paper proposes a new method to video steganography,which involves utilizing a Genetic Algorithm(GA)for identifying the Region of Interest(ROI)in the cover video.The ROI is the area in the video that is the most suitable for data embedding.The secret data is encrypted using the Advanced Encryption Standard(AES),which is a widely accepted encryption standard,before being embedded into the cover video,utilizing up to 10%of the cover video.This process ensures the security and confidentiality of the embedded data.The performance metrics for assessing the proposed method are the Peak Signalto-Noise Ratio(PSNR)and the encoding and decoding time.The results show that the proposed method has a high embedding capacity and efficiency,with a PSNR ranging between 64 and 75 dBs,which indicates that the embedded data is almost indistinguishable from the original video.Additionally,the method can encode and decode data quickly,making it efficient for real-time applications.展开更多
Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format fo...Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset.展开更多
Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being...Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate.展开更多
The use of a constrained groove pressing(CGP) method to plastically deform AA6063 aluminum alloy led to the improved surface properties. It was found that hardness magnitude is dramatically improved and its uniformity...The use of a constrained groove pressing(CGP) method to plastically deform AA6063 aluminum alloy led to the improved surface properties. It was found that hardness magnitude is dramatically improved and its uniformity is considerably decreased after the first pass, while subsequent passes result in better hardness behavior for the processed material. Also, the elongated grains formed in the first pass of the CGP are gradually converted to the equiaxed counterparts by adding pass numbers. Eventually, higher corrosion resistance of the sample by imposing the CGP process is related to the quick formation of passivation film and the change in the morphology of the second phase and precipitates which hinder their electrochemical reactions and decrease the potential localized attack sites.展开更多
Rainfall is a significant portion of hydrologic data. Rainfall records, however, are often incomplete due to several factors. In this study, the inverse distance weighting (IDW) method integrated with GIS is used to e...Rainfall is a significant portion of hydrologic data. Rainfall records, however, are often incomplete due to several factors. In this study, the inverse distance weighting (IDW) method integrated with GIS is used to estimate the rainfall distribution in Duhok Governorate. A total of 25 rain fall stations and rainfall data between 2000 and 2010 were used, where 6 rainfall stations were used for cross-validation. In addition, the relationship between interpolation accuracy and two critical parameters of IDW (Power α value, and a radius of influence) was evaluated. Also, the rainfall distribution of Duhok Governorate was classified. As an output of this study and in most cases, the optimal parameters for IDW in interpolating rainfall data must have a radius of influence up to (15 - 60 km). However, the optimal α values varied between 1 and 5. Based on the results of this study, we concluded that the IDW is an appropriate method of spatial interpolation to predict the probable rainfall data in Duhok Governorate using α = 1 and search radius = 105 km for all the 25 rainfall stations.展开更多
Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat e...Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat exchangers in terms of size and structure.In this study,a novel heat exchanger with helically grooved annulus shell and helically coiled tube was investigated by numerical simulation.Helically grooves with the same pitch of the helical coil tube and different depth are created on the inner and outer wall of annulus shell to improve the thermal performance of heat exchanger.In the first section,thermal performance of the shell and coil heat exchanger with the helical grooves on its outer shell wall was compared with same but without helical grooves.At the second section,helically grooves created on both outer and inner wall of the annulus shell with different groove depths.The results showed that the heat exchanger with grooves on both inner and outer shell wall has better thermal performance up to 20%compared to the heat exchanger with grooves on only outer shell wall.The highest thermal performance achieves at lower flow rates and higher groove depths whereas the pressure drop did not increase significantly.展开更多
Background Augmented reality(AR),virtual reality(VR),and remote-controlled devices are driving the need for a better 5 G infrastructure to support faster data transmission.In this study,mobile AR is emphasized as a vi...Background Augmented reality(AR),virtual reality(VR),and remote-controlled devices are driving the need for a better 5 G infrastructure to support faster data transmission.In this study,mobile AR is emphasized as a viable and widespread solution that can be easily scaled to millions of end-users and educators because it is lightweight and low-cost and can be implemented in a cross-platform manner.Low-efficiency smart devices and high latencies for real-time interactions via regular mobile networks are primary barriers to the use of AR in education.New 5 G cellular networks can mitigate some of these issues via network slicing,device-to-device communication,and mobile edge computing.Methods In this study,we use a new technology to solve some of these problems.The proposed software monitors image targets on a printed book and renders 3 D objects and alphabetic models.In addition,the application considers phonetics.The sound(phonetic)and 3 D representation of a letter are played as soon as the image target is detected.3 D models of the Turkish alphabet are created by using Adobe Photoshop with Unity 3 D and Vuforia SDK.Results The proposed application teaches Turkish alphabets and phonetics by using 3 D object models,3 D letters,and 3 D phrases,including letters and sounds.展开更多
Macro rainwater harvesting techniques (Macro RWH) are getting more popular to overcome the problem of water scarcity in arid and semi-arid areas. Iraq is experiencing serious water shortage problem now despite of the ...Macro rainwater harvesting techniques (Macro RWH) are getting more popular to overcome the problem of water scarcity in arid and semi-arid areas. Iraq is experiencing serious water shortage problem now despite of the presence of Tigris and Euphrates Rivers. RWH can help to overcome this problem. In this research, RWH was applied in Koya City in its districts, North West Iraq. Twenty-two basins were identified as the catchment area for the application of RWH technique. Watershed modeling system (WMS), based on Soil Conservation Service-curve number (SCS-CN) method, was applied to calculate direct runoff from individual daily rain storm using average annual rainfall records of the area. Two consecutive adjustments for the curve number were considered. The first was for the antecedent moisture condition (AMC) and the second was for the slope. These adjustments increased the total resultant harvested runoff up to 79.402 × 106 m3. The average percentage of increase of harvested runoff volume reached 9.28%. This implies that water allocation is of the order of 2000 cubic meter per capita per year. This quantity of water will definitely help to develop the area.展开更多
During operating of the X-ray machines, if the protection of X-ray rooms is insufficient, not only the patient but also clinical staffs as well as public are exposed to high X-ray dosage and they are affected from X-r...During operating of the X-ray machines, if the protection of X-ray rooms is insufficient, not only the patient but also clinical staffs as well as public are exposed to high X-ray dosage and they are affected from X-ray related to the dose level. In the present survey, by testing the radiological leakage and scatter from X-rays machines in radiology departments of 7 randomly selected hospitals in Duhok governorate, the effects dose of X-ray to the both control panel area and the patients waiting or visiting area who are located near the radiography room, were measured. The dose was recorded for a range of peak kilovoltage (kVp) and mAs values to find efficiency of shielding materials (barriers) of radiography rooms for different X-rays level. The measurements were performed at one meter above the ground surface which was the same height of X-rays tube by using Gamma Scout dosimeter. From the measurement results, it was seen that the most hospitals barriers (doors and walls) were not appropriate to the standards except 2 hospitals. The maximum effective doses were measured in uncontrolled area of Khazer hospital which was 82.48 ± 0.73 mSv·yr-1 that was much more than the reference dose limits and in controlled area of Haval Banda Zaroka hospital which was 12.98 ± 0.16 mSv·yr-1. In result, the knowledge about the radiation dose affecting the radiologists and public in the selected hospitals was obtained, and by informing the radiologists and the hospitals managements, the necessary regulations would be planned.展开更多
In current numerical study,forced flow and heat transfer of water/NDG(Nitrogen-doped graphene)nanofluid in nanoparticles mass fractions(φ)of 0,2%and 4%at Reynolds numbers(Re)of 10,50,100 and 150 are simulated in stea...In current numerical study,forced flow and heat transfer of water/NDG(Nitrogen-doped graphene)nanofluid in nanoparticles mass fractions(φ)of 0,2%and 4%at Reynolds numbers(Re)of 10,50,100 and 150 are simulated in steady states.Studied geometry is a two-dimensional microchannel under the influence of nanofluid jet injection.Temperature of inlet fluid equals with Tc=293 K and hot source of microchannel is under the influence of oscillating heat flux.Also,in this research,the effect of the variations of attack angle of triangular rib(15°,30°,45°and 60°)on laminar nanofluid flow behavior inside the studied rectangular geometry with the ratio of L/H=28 and nanofluid jet injection is investigated.Obtained results indicate that the increase of Reynolds number,nanoparticles mass fraction and attack angle of rib leads to the increase of pressure drop.By increasing fluid viscosity,momentum depreciation of fluid in collusion with microchannel surfaces enhances.Also,the increase of attack angle of rib at higher Reynolds numbers has a great effect on this coefficient.At low Reynolds numbers,due to slow motion of fluid,variations of attack angle of rib,especially in angles of 30°,45°and 60°are almost similar.By increasing fluid velocity,the effect of the variations of attack angle on pressure drop becomes significant and pressure drop figures act differently.In general,by using heat transfer enhancement methods in studied geometry,heat transfer increases almost 25%.展开更多
This work investigates the steam condensation phenomena in an air-cooled condenser.The considered horizontal flattened tube has a 30 mm hydraulic diameter,and its length is a function of the steam quality with a limit...This work investigates the steam condensation phenomena in an air-cooled condenser.The considered horizontal flattened tube has a 30 mm hydraulic diameter,and its length is a function of the steam quality with a limit value between 0.95 and 0.05.The mass flow rate ranges from 4 to 40 kg/m^(2).s with a saturated temperature spanning an interval from 40°C to 80°C.A special approach has been implemented using the Engineering Equation Solver(EES)to solve a series of equations for the two-phase flow pattern and the related heat transfer coefficients.A wavy-stratified structure of the two-phase flow has been found when the mass rate was between 4 and 24 kg/m^(2).s.In contrast,an initially annular flow is gradually converted into a wavy stratified flow(due to the condensation process taking place inside the flattened tube)when the considered range ranges from 32 to 40 kg/m^(2).s.展开更多
Zinc oxide (ZnO) has been used as heterogeneous catalyst for the degradation of Acid Alizarin Black S dye (AAB) in aqueous solutions using UV light irradiation. Experiments were conducted at various operating para...Zinc oxide (ZnO) has been used as heterogeneous catalyst for the degradation of Acid Alizarin Black S dye (AAB) in aqueous solutions using UV light irradiation. Experiments were conducted at various operating parameters. The operating parameters were amount of catalyst (50 rag, 100 mg and 150 mg), initial concentration of dye (30 mg/L, 50 mg/L and 70 mg/L), the pH of solution (2, 4, 6, 8, l0 and 12) and the UV light intensity (6 watt and 12 watt). The progress of the degradation reaction was monitored spectrophotometrically. It was found that the degradation process of AAB solution was accelerated with increased catalyst dosage and decreased initial concentration of AAB. It was also found that the removal efficiency of AAB significantly depend on pH value of solution. The results show that the degradation percent reaches the highest values with pH close to neutral. The data proved that removal percent of dye decreased when 6 watt lamp used instead of 12 watt lamp. The kinetic study confirmed that photocatalytic degradation of AAB dye follows a pseudo first order reaction rate.展开更多
The aim of this paper is to determine the maximum values of the track length (Lmax) of alpha particles in Nuclear Track Detector (type CR-39) using a new method by taking the relation between the etching time and the ...The aim of this paper is to determine the maximum values of the track length (Lmax) of alpha particles in Nuclear Track Detector (type CR-39) using a new method by taking the relation between the etching time and the diameter square of alpha particle with different energies at constant bulk etch rate VB (1.45 μm/hr) by using TRACK_TEST program from Brun et al. function and Yu et al. function. Using the new equation, the maximum values of the track lengths of alpha particles measured in CR-39 detector have been found to be in a good agreement with the values measured by using Brun et al. function and Yu et al. function in TRACK_TEST program.展开更多
The Dye Sensitized Solar Cell (DSSC) plays an important role because of low material cost, ease of production and high conversion efficiency as compared to other thin-film solar cell technologies. The main objective i...The Dye Sensitized Solar Cell (DSSC) plays an important role because of low material cost, ease of production and high conversion efficiency as compared to other thin-film solar cell technologies. The main objective is to create and find the best configuration of the solar cell based on materials that are inexpensive and highly efficient in solar energy conversion and subsequently test the efficiency of dye sensitized titanium dioxide solar cell. We begin the process with two glass plates coated with Fluorine tin oxide (FTO). Titanium dioxide is applied to the conductive side of one plate and the other plate is coated with graphite. A dye is adsorbed on to the TiO2 layer and then the plates are sandwiched together. A drop of iodide electrolyte is then added between the plates. The tests carried out indoors under a lamp emitting all wavelengths in the visible spectrum were not found to provide consistent data due to substantial heating of the cell. The outdoor tests carried out in natural sunlight exhibited steady voltage at much higher level. Future research will involve the incorporation of quantum dots instead of the organic dye as a sensitizer. Quantum dots have the advantages of providing tunable band gaps and the ability to absorb specific wavelength.展开更多
Kurdistan Region (KR) of Iraq has suffered from the drought period during the seasons 2007-2008 and 2008-2009 that affected the human and economic activities of the region. Macro rainwater harvesting (Macro RWH) is on...Kurdistan Region (KR) of Iraq has suffered from the drought period during the seasons 2007-2008 and 2008-2009 that affected the human and economic activities of the region. Macro rainwater harvesting (Macro RWH) is one of the techniques that can ensure water availability for a region having limited water resources. This technique is based on Soil Conservation ServiceCurve Number (SCS-CN) method and the Watershed Modeling System (WMS) was used to estimate the runoff. Rainfall records of Sulaymaniyah area for the period 2002-2012 were studied and an average season was selected (2010-2011). The results of the application of the WMS model showed that about 10.76 million cubic meters could be harvested. The results also showed that the quantity of the harvested runoff was highly affected by rainfall depth, curve number values, antecedent moisture conditions (AMC) and the area of the basins.展开更多
In this letter, variational homotopy perturbation method (VHPM) has been studied to obtain solitary wave solutions of modified Camassa-Holm and Degasperis-Procesi equations. The results show that the VHPM is suitable ...In this letter, variational homotopy perturbation method (VHPM) has been studied to obtain solitary wave solutions of modified Camassa-Holm and Degasperis-Procesi equations. The results show that the VHPM is suitable for solving nonlinear differential equations with fully nonlinear dispersion term. The travelling wave solution for above equation compared with VIM, HPM, and exact solution. Also, it was shown that the present method is effective, suitable, and reliable for these types of equations.展开更多
In-doped (Se0.7Te0.3) thin films (In: 0, 0.05, and 0.08wt%) with thickness of (150 ± 25 nm) have been deposited on glass substrates by chemical vapor deposition by using selenium, tellurium and indium whose purit...In-doped (Se0.7Te0.3) thin films (In: 0, 0.05, and 0.08wt%) with thickness of (150 ± 25 nm) have been deposited on glass substrates by chemical vapor deposition by using selenium, tellurium and indium whose purity is (99.99%) compound alloy. The electrical and optical properties of the thin films were analyzed. The effects of In-doping concentration on the thermoelectric properties of the thin films were investigated by room-temperature measurement of the See beck coefficient and electrical resistivity. The thermoelectric power factor shows the best result at 0.05wt% in doping. The See beck coefficients are positive with increasing in doping concentration from 0 to 0.08wt%. And the thin films show p-type conduction. For optical properties, the transmission of all samples was approximated to 90%.展开更多
The present work investigates the linear and mass attenuation coefficients for gamma rays practically and theoretically by using spectroscopy gamma ray (UCS-20) and program (XCOM)) for various types of common use gran...The present work investigates the linear and mass attenuation coefficients for gamma rays practically and theoretically by using spectroscopy gamma ray (UCS-20) and program (XCOM)) for various types of common use granite, and compares them with the lead because of its high blocking ability for this type of radiation. This paper concluded through linear and mass attenuation coefficients measurements that these coefficients decrease with increasing incident photons energy. Measurements also showed that the linear attenuation coefficients appropriate linearly with density while mass attenuation coefficients do not get affected.展开更多
基金Ministry of Education,Youth and Sports of the Chezk Republic,Grant/Award Numbers:SP2023/039,SP2023/042the European Union under the REFRESH,Grant/Award Number:CZ.10.03.01/00/22_003/0000048。
文摘Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.
文摘In the present study, investigation of extracorporeal shock wave lithotripsy in Zakho City for breakdown kidney and ureteral stones has been carried out. The data were collected from the center of breakdown kidney stones in Zakho hospital. A total of 34 patients (25 male and 9 female) of ages ranged from 20 - 60 years were treated with ESWL. The patient harboring 24 renal stones and 10 ureteral stones of size ranged from 7 to 23 mm of almost patients are 8 mm and composed of calcium oxalate. The study has been conducted taking in to consideration the parameters (type, sizes, composition and location of stone as well as region and ages of patients, also power, number of shock wave and session). The results show that the number of shock wave decreases nearly exponentially with the ages of patients for calcium oxalate stone of size 8 mm under constant power 4 watt while it tends to increase according to increasing stones size for the patients of ages 20 - 30 years. The size of calcium oxalate stones decreases nearly exponentially with the patients’ ages for workers in Zakho city. Also for same size 8 mm of (calcium, phosphate, and oxalate) stones and different regions of zakho city, the number of shock waves decreases according to increasing ages of patients. Contrary to that for certain size of stones 8 mm, the number of shock wave starts to increase from uric acid to maximum value for calcium oxalate stone for the adult patients of age’s 22 up to 30 years. However for elders ages 30 - 60 years and different regions, the size of renal and ureteric stones increases from the minimum value for calcium, phosphate, oxalate to maximum value for calcium oxalate stone only. Uric acid stone requires minimum power to break, while the calcium oxalate needs maximum power to fragment due to its hardness composition. Later number of session of shock wave required for crushing each stones size increases according to increasing its size while its variation due to enhancing patients ages for calcium oxalate of size 8 mm results in nearly a decreasing exponential behavior.
文摘With the widespread use of the internet,there is an increasing need to ensure the security and privacy of transmitted data.This has led to an intensified focus on the study of video steganography,which is a technique that hides data within a video cover to avoid detection.The effectiveness of any steganography method depends on its ability to embed data without altering the original video’s quality while maintaining high efficiency.This paper proposes a new method to video steganography,which involves utilizing a Genetic Algorithm(GA)for identifying the Region of Interest(ROI)in the cover video.The ROI is the area in the video that is the most suitable for data embedding.The secret data is encrypted using the Advanced Encryption Standard(AES),which is a widely accepted encryption standard,before being embedded into the cover video,utilizing up to 10%of the cover video.This process ensures the security and confidentiality of the embedded data.The performance metrics for assessing the proposed method are the Peak Signalto-Noise Ratio(PSNR)and the encoding and decoding time.The results show that the proposed method has a high embedding capacity and efficiency,with a PSNR ranging between 64 and 75 dBs,which indicates that the embedded data is almost indistinguishable from the original video.Additionally,the method can encode and decode data quickly,making it efficient for real-time applications.
文摘Handwritten character recognition(HCR)involves identifying characters in images,documents,and various sources such as forms surveys,questionnaires,and signatures,and transforming them into a machine-readable format for subsequent processing.Successfully recognizing complex and intricately shaped handwritten characters remains a significant obstacle.The use of convolutional neural network(CNN)in recent developments has notably advanced HCR,leveraging the ability to extract discriminative features from extensive sets of raw data.Because of the absence of pre-existing datasets in the Kurdish language,we created a Kurdish handwritten dataset called(KurdSet).The dataset consists of Kurdish characters,digits,texts,and symbols.The dataset consists of 1560 participants and contains 45,240 characters.In this study,we chose characters only from our dataset.We utilized a Kurdish dataset for handwritten character recognition.The study also utilizes various models,including InceptionV3,Xception,DenseNet121,and a customCNNmodel.To show the performance of the KurdSet dataset,we compared it to Arabic handwritten character recognition dataset(AHCD).We applied the models to both datasets to show the performance of our dataset.Additionally,the performance of the models is evaluated using test accuracy,which measures the percentage of correctly classified characters in the evaluation phase.All models performed well in the training phase,DenseNet121 exhibited the highest accuracy among the models,achieving a high accuracy of 99.80%on the Kurdish dataset.And Xception model achieved 98.66%using the Arabic dataset.
文摘Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate.
基金funded by“Quality Engineering Project of Anhui Province of China in 2016”entitled mold design and manufacturing experimental training center(2016sxzx050)。
文摘The use of a constrained groove pressing(CGP) method to plastically deform AA6063 aluminum alloy led to the improved surface properties. It was found that hardness magnitude is dramatically improved and its uniformity is considerably decreased after the first pass, while subsequent passes result in better hardness behavior for the processed material. Also, the elongated grains formed in the first pass of the CGP are gradually converted to the equiaxed counterparts by adding pass numbers. Eventually, higher corrosion resistance of the sample by imposing the CGP process is related to the quick formation of passivation film and the change in the morphology of the second phase and precipitates which hinder their electrochemical reactions and decrease the potential localized attack sites.
文摘Rainfall is a significant portion of hydrologic data. Rainfall records, however, are often incomplete due to several factors. In this study, the inverse distance weighting (IDW) method integrated with GIS is used to estimate the rainfall distribution in Duhok Governorate. A total of 25 rain fall stations and rainfall data between 2000 and 2010 were used, where 6 rainfall stations were used for cross-validation. In addition, the relationship between interpolation accuracy and two critical parameters of IDW (Power α value, and a radius of influence) was evaluated. Also, the rainfall distribution of Duhok Governorate was classified. As an output of this study and in most cases, the optimal parameters for IDW in interpolating rainfall data must have a radius of influence up to (15 - 60 km). However, the optimal α values varied between 1 and 5. Based on the results of this study, we concluded that the IDW is an appropriate method of spatial interpolation to predict the probable rainfall data in Duhok Governorate using α = 1 and search radius = 105 km for all the 25 rainfall stations.
文摘Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat exchangers in terms of size and structure.In this study,a novel heat exchanger with helically grooved annulus shell and helically coiled tube was investigated by numerical simulation.Helically grooves with the same pitch of the helical coil tube and different depth are created on the inner and outer wall of annulus shell to improve the thermal performance of heat exchanger.In the first section,thermal performance of the shell and coil heat exchanger with the helical grooves on its outer shell wall was compared with same but without helical grooves.At the second section,helically grooves created on both outer and inner wall of the annulus shell with different groove depths.The results showed that the heat exchanger with grooves on both inner and outer shell wall has better thermal performance up to 20%compared to the heat exchanger with grooves on only outer shell wall.The highest thermal performance achieves at lower flow rates and higher groove depths whereas the pressure drop did not increase significantly.
文摘Background Augmented reality(AR),virtual reality(VR),and remote-controlled devices are driving the need for a better 5 G infrastructure to support faster data transmission.In this study,mobile AR is emphasized as a viable and widespread solution that can be easily scaled to millions of end-users and educators because it is lightweight and low-cost and can be implemented in a cross-platform manner.Low-efficiency smart devices and high latencies for real-time interactions via regular mobile networks are primary barriers to the use of AR in education.New 5 G cellular networks can mitigate some of these issues via network slicing,device-to-device communication,and mobile edge computing.Methods In this study,we use a new technology to solve some of these problems.The proposed software monitors image targets on a printed book and renders 3 D objects and alphabetic models.In addition,the application considers phonetics.The sound(phonetic)and 3 D representation of a letter are played as soon as the image target is detected.3 D models of the Turkish alphabet are created by using Adobe Photoshop with Unity 3 D and Vuforia SDK.Results The proposed application teaches Turkish alphabets and phonetics by using 3 D object models,3 D letters,and 3 D phrases,including letters and sounds.
文摘Macro rainwater harvesting techniques (Macro RWH) are getting more popular to overcome the problem of water scarcity in arid and semi-arid areas. Iraq is experiencing serious water shortage problem now despite of the presence of Tigris and Euphrates Rivers. RWH can help to overcome this problem. In this research, RWH was applied in Koya City in its districts, North West Iraq. Twenty-two basins were identified as the catchment area for the application of RWH technique. Watershed modeling system (WMS), based on Soil Conservation Service-curve number (SCS-CN) method, was applied to calculate direct runoff from individual daily rain storm using average annual rainfall records of the area. Two consecutive adjustments for the curve number were considered. The first was for the antecedent moisture condition (AMC) and the second was for the slope. These adjustments increased the total resultant harvested runoff up to 79.402 × 106 m3. The average percentage of increase of harvested runoff volume reached 9.28%. This implies that water allocation is of the order of 2000 cubic meter per capita per year. This quantity of water will definitely help to develop the area.
文摘During operating of the X-ray machines, if the protection of X-ray rooms is insufficient, not only the patient but also clinical staffs as well as public are exposed to high X-ray dosage and they are affected from X-ray related to the dose level. In the present survey, by testing the radiological leakage and scatter from X-rays machines in radiology departments of 7 randomly selected hospitals in Duhok governorate, the effects dose of X-ray to the both control panel area and the patients waiting or visiting area who are located near the radiography room, were measured. The dose was recorded for a range of peak kilovoltage (kVp) and mAs values to find efficiency of shielding materials (barriers) of radiography rooms for different X-rays level. The measurements were performed at one meter above the ground surface which was the same height of X-rays tube by using Gamma Scout dosimeter. From the measurement results, it was seen that the most hospitals barriers (doors and walls) were not appropriate to the standards except 2 hospitals. The maximum effective doses were measured in uncontrolled area of Khazer hospital which was 82.48 ± 0.73 mSv·yr-1 that was much more than the reference dose limits and in controlled area of Haval Banda Zaroka hospital which was 12.98 ± 0.16 mSv·yr-1. In result, the knowledge about the radiation dose affecting the radiologists and public in the selected hospitals was obtained, and by informing the radiologists and the hospitals managements, the necessary regulations would be planned.
文摘In current numerical study,forced flow and heat transfer of water/NDG(Nitrogen-doped graphene)nanofluid in nanoparticles mass fractions(φ)of 0,2%and 4%at Reynolds numbers(Re)of 10,50,100 and 150 are simulated in steady states.Studied geometry is a two-dimensional microchannel under the influence of nanofluid jet injection.Temperature of inlet fluid equals with Tc=293 K and hot source of microchannel is under the influence of oscillating heat flux.Also,in this research,the effect of the variations of attack angle of triangular rib(15°,30°,45°and 60°)on laminar nanofluid flow behavior inside the studied rectangular geometry with the ratio of L/H=28 and nanofluid jet injection is investigated.Obtained results indicate that the increase of Reynolds number,nanoparticles mass fraction and attack angle of rib leads to the increase of pressure drop.By increasing fluid viscosity,momentum depreciation of fluid in collusion with microchannel surfaces enhances.Also,the increase of attack angle of rib at higher Reynolds numbers has a great effect on this coefficient.At low Reynolds numbers,due to slow motion of fluid,variations of attack angle of rib,especially in angles of 30°,45°and 60°are almost similar.By increasing fluid velocity,the effect of the variations of attack angle on pressure drop becomes significant and pressure drop figures act differently.In general,by using heat transfer enhancement methods in studied geometry,heat transfer increases almost 25%.
文摘This work investigates the steam condensation phenomena in an air-cooled condenser.The considered horizontal flattened tube has a 30 mm hydraulic diameter,and its length is a function of the steam quality with a limit value between 0.95 and 0.05.The mass flow rate ranges from 4 to 40 kg/m^(2).s with a saturated temperature spanning an interval from 40°C to 80°C.A special approach has been implemented using the Engineering Equation Solver(EES)to solve a series of equations for the two-phase flow pattern and the related heat transfer coefficients.A wavy-stratified structure of the two-phase flow has been found when the mass rate was between 4 and 24 kg/m^(2).s.In contrast,an initially annular flow is gradually converted into a wavy stratified flow(due to the condensation process taking place inside the flattened tube)when the considered range ranges from 32 to 40 kg/m^(2).s.
文摘Zinc oxide (ZnO) has been used as heterogeneous catalyst for the degradation of Acid Alizarin Black S dye (AAB) in aqueous solutions using UV light irradiation. Experiments were conducted at various operating parameters. The operating parameters were amount of catalyst (50 rag, 100 mg and 150 mg), initial concentration of dye (30 mg/L, 50 mg/L and 70 mg/L), the pH of solution (2, 4, 6, 8, l0 and 12) and the UV light intensity (6 watt and 12 watt). The progress of the degradation reaction was monitored spectrophotometrically. It was found that the degradation process of AAB solution was accelerated with increased catalyst dosage and decreased initial concentration of AAB. It was also found that the removal efficiency of AAB significantly depend on pH value of solution. The results show that the degradation percent reaches the highest values with pH close to neutral. The data proved that removal percent of dye decreased when 6 watt lamp used instead of 12 watt lamp. The kinetic study confirmed that photocatalytic degradation of AAB dye follows a pseudo first order reaction rate.
文摘The aim of this paper is to determine the maximum values of the track length (Lmax) of alpha particles in Nuclear Track Detector (type CR-39) using a new method by taking the relation between the etching time and the diameter square of alpha particle with different energies at constant bulk etch rate VB (1.45 μm/hr) by using TRACK_TEST program from Brun et al. function and Yu et al. function. Using the new equation, the maximum values of the track lengths of alpha particles measured in CR-39 detector have been found to be in a good agreement with the values measured by using Brun et al. function and Yu et al. function in TRACK_TEST program.
文摘The Dye Sensitized Solar Cell (DSSC) plays an important role because of low material cost, ease of production and high conversion efficiency as compared to other thin-film solar cell technologies. The main objective is to create and find the best configuration of the solar cell based on materials that are inexpensive and highly efficient in solar energy conversion and subsequently test the efficiency of dye sensitized titanium dioxide solar cell. We begin the process with two glass plates coated with Fluorine tin oxide (FTO). Titanium dioxide is applied to the conductive side of one plate and the other plate is coated with graphite. A dye is adsorbed on to the TiO2 layer and then the plates are sandwiched together. A drop of iodide electrolyte is then added between the plates. The tests carried out indoors under a lamp emitting all wavelengths in the visible spectrum were not found to provide consistent data due to substantial heating of the cell. The outdoor tests carried out in natural sunlight exhibited steady voltage at much higher level. Future research will involve the incorporation of quantum dots instead of the organic dye as a sensitizer. Quantum dots have the advantages of providing tunable band gaps and the ability to absorb specific wavelength.
文摘Kurdistan Region (KR) of Iraq has suffered from the drought period during the seasons 2007-2008 and 2008-2009 that affected the human and economic activities of the region. Macro rainwater harvesting (Macro RWH) is one of the techniques that can ensure water availability for a region having limited water resources. This technique is based on Soil Conservation ServiceCurve Number (SCS-CN) method and the Watershed Modeling System (WMS) was used to estimate the runoff. Rainfall records of Sulaymaniyah area for the period 2002-2012 were studied and an average season was selected (2010-2011). The results of the application of the WMS model showed that about 10.76 million cubic meters could be harvested. The results also showed that the quantity of the harvested runoff was highly affected by rainfall depth, curve number values, antecedent moisture conditions (AMC) and the area of the basins.
文摘In this letter, variational homotopy perturbation method (VHPM) has been studied to obtain solitary wave solutions of modified Camassa-Holm and Degasperis-Procesi equations. The results show that the VHPM is suitable for solving nonlinear differential equations with fully nonlinear dispersion term. The travelling wave solution for above equation compared with VIM, HPM, and exact solution. Also, it was shown that the present method is effective, suitable, and reliable for these types of equations.
文摘In-doped (Se0.7Te0.3) thin films (In: 0, 0.05, and 0.08wt%) with thickness of (150 ± 25 nm) have been deposited on glass substrates by chemical vapor deposition by using selenium, tellurium and indium whose purity is (99.99%) compound alloy. The electrical and optical properties of the thin films were analyzed. The effects of In-doping concentration on the thermoelectric properties of the thin films were investigated by room-temperature measurement of the See beck coefficient and electrical resistivity. The thermoelectric power factor shows the best result at 0.05wt% in doping. The See beck coefficients are positive with increasing in doping concentration from 0 to 0.08wt%. And the thin films show p-type conduction. For optical properties, the transmission of all samples was approximated to 90%.
文摘The present work investigates the linear and mass attenuation coefficients for gamma rays practically and theoretically by using spectroscopy gamma ray (UCS-20) and program (XCOM)) for various types of common use granite, and compares them with the lead because of its high blocking ability for this type of radiation. This paper concluded through linear and mass attenuation coefficients measurements that these coefficients decrease with increasing incident photons energy. Measurements also showed that the linear attenuation coefficients appropriate linearly with density while mass attenuation coefficients do not get affected.