期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
SPLITTING EXTRAPOLATIONS FOR SOLVING BOUNDARY INTEGRAL EQUATIONS OF LINEAR ELASTICITY DIRICHLET PROBLEMS ON POLYGONS BY MECHANICAL QUADRATURE METHODS
1
作者 Jin Huang Tao Lu 《Journal of Computational Mathematics》 SCIE EI CSCD 2006年第1期9-18,共10页
Taking hm as the mesh width of a curved edge Гm (m = 1, ..., d ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first... Taking hm as the mesh width of a curved edge Гm (m = 1, ..., d ) of polygons and using quadrature rules for weakly singular integrals, this paper presents mechanical quadrature methods for solving BIES of the first kind of plane elasticity Dirichlet problems on curved polygons, which possess high accuracy O(h0^3) and low computing complexities. Since multivariate asymptotic expansions of approximate errors with power hi^3 (i = 1, 2, ..., d) are shown, by means of the splitting extrapolations high precision approximations and a posteriori estimate are obtained. 展开更多
关键词 Splitting extrapolation Linear elasticity Dirichlet problem Boundary integral equation of the first kind Mechanical quadrature method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部