The transformation behavior of a 40Cr2Ni2MoV cast steel manufactured by electroslag remelting (ESR) has been investigated. Compared to a forged steel, the incubation periods for both the pearlite and bainite transform...The transformation behavior of a 40Cr2Ni2MoV cast steel manufactured by electroslag remelting (ESR) has been investigated. Compared to a forged steel, the incubation periods for both the pearlite and bainite transformations are shorter, but the transformation times are longer. The austenite is easier to transform into martensite. Optical microscopy and TEM indicated that there were variations in microstructure during the super-cooled austenite transformation. This is attributed to an inhomogeneous austenite, resulting from the segregation of elements during the ESR solidification.展开更多
The hysteresis unit system was introduced to mechanical structure behavior of the TiNi SMA joint based on the structure characteristics of the martensite variants in the joints, and some functions reflecting its inner...The hysteresis unit system was introduced to mechanical structure behavior of the TiNi SMA joint based on the structure characteristics of the martensite variants in the joints, and some functions reflecting its inner structure characteristics and micro-behavior such as density function, phase transformation function were set up from micro-points. Finally, the structure behavior relationship and corresponding mathematic model reflecting the relationship among hysteresis strain, stress and phase transformation strain were provided, which could predict the stress-strain behavior of the TiNi SMA joint to large extent.展开更多
文摘The transformation behavior of a 40Cr2Ni2MoV cast steel manufactured by electroslag remelting (ESR) has been investigated. Compared to a forged steel, the incubation periods for both the pearlite and bainite transformations are shorter, but the transformation times are longer. The austenite is easier to transform into martensite. Optical microscopy and TEM indicated that there were variations in microstructure during the super-cooled austenite transformation. This is attributed to an inhomogeneous austenite, resulting from the segregation of elements during the ESR solidification.
基金This project is sponsored by NNSFC(No.49775060).
文摘The hysteresis unit system was introduced to mechanical structure behavior of the TiNi SMA joint based on the structure characteristics of the martensite variants in the joints, and some functions reflecting its inner structure characteristics and micro-behavior such as density function, phase transformation function were set up from micro-points. Finally, the structure behavior relationship and corresponding mathematic model reflecting the relationship among hysteresis strain, stress and phase transformation strain were provided, which could predict the stress-strain behavior of the TiNi SMA joint to large extent.