期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The atmospheric circulation patterns influencing the frequency of spring sand-dust storms in the Tarim Basin 被引量:2
1
作者 HongJun Li XinHua Yang +2 位作者 Yong Zhao MinZhong Wang Wen Huo 《Research in Cold and Arid Regions》 CSCD 2014年第2期168-173,共6页
Using NCEP/NCAR reanalysis data and the sand-storm frequency data fi'om 37 weather stations in the Tarim Basin for the period 1961-2009, the relationship between the frequency of spring sandstorms in the Tafim Basin ... Using NCEP/NCAR reanalysis data and the sand-storm frequency data fi'om 37 weather stations in the Tarim Basin for the period 1961-2009, the relationship between the frequency of spring sandstorms in the Tafim Basin and the associated atmospheric circu- lation pattems is analyzed in this study. We found significantly negative correlations between sandstorm frequency and the 500-hPa geopotential height over the Paris Basin and midwestem Mongolia, while there were positive correlations over the Ural River region. The rising of the 500-hPa geopotential height in midwestem Mongolia and its falling over the Ural region corre- spond to a weakening of the large-scale wave patterns in the Eurasian region, which directly causes the frequency of the sand-dust storms in the Tarim Basin to decline. Also, the abrupt decline in the spring sandstorm frequency in the Tarim Basin observed in the last half-century is associated with profound changes in the atmospheric circulation in these key regions. At the interannual scale, the strengthened cyclonic atmospheric circulation patterns in the western part of Mongolia and the anticyclonic patterns over the East European plains at 500-hPa geopotential height, are responsible for frequent sandstorm occurrences in the Tarim Basin. 展开更多
关键词 Tarim Basin frequency of sand-dust storm atmospheric circulation
下载PDF
Application of wind profiler data to rainfall analyses in Tazhong Oilfield region,Xinjiang,China 被引量:1
2
作者 MinZhong WANG WenShou WEI +2 位作者 Qing HE XinChun LIU ZhongJie ZHAO 《Journal of Arid Land》 SCIE 2012年第4期369-377,共9页
To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection expe... To improve the level of meteorological service for the Oilfield region in the Taklimakan Desert, the Urumqi Institute of Desert Meteorology of the China Meteorological Administration (CMA) conducted a detection experiment by means of wind profiling radar (WPR) in Tazhong Oilfield region of Xinjiang, China in July 2010. By using the wind profiler data obtained during the rainfall process on 27 July, this paper analyzed the wind field fea- tures and some related scientific issues of this weather event. The results indicated that: (1) wind profiler data had high temporal resolution and vertical spatial resolution, and could be used to analyze detailed vertical structures of rainfall processes and the characteristics of meso-scale systems. Before and after the rain event on 27 July, the wind field showed multi-layer vertical structures, having an obvious meso-scale wind shear line and three airflows from different directions, speeding up the motion of updraft convergence in the lower atmosphere. Besides, the wind directions before and after the rainfall changed inversely with increasing height. Before the rain, the winds blew clockwise, but after the onset of the rain, the wind directions became counterclockwise mainly; (2) the temperature advection derived from wind profiler data can reproduce the characteristics of low-level thermodynamic evolution in the process of rainfall, which is capable to reflect the variation trend of hydrostatic stability in the atmosphere. In the early stage of the precipitation on 27 July, the lower atmosphere was mainly affected by warm advection which had accumulated unstable energy for the rainfall event and was beneficial for the occurrence of updraft motion and precipitation; (3) the "large-value zone" of the radar reflectivity factor Z was virtually consistent with the onset and end of the rainfall, the height for the formation of rain cloud particles, and precipitation intensity. The reflectivity factor Z during this event varied approximately in the range of 18-38 dBZ and the rain droplets formed mainly at the layer of 3,800-4,500 m. 展开更多
关键词 wind profiling radar vertical atmospheric structure temperature advection radar reflectivity factor Z Tazhong Oiifield Taklimakan Desert
下载PDF
Aerosol optical absorption by dust and black carbon in Taklimakan Desert,during no-dust and dust-storm conditions 被引量:3
3
作者 Hui Lu Wenshou Wei +2 位作者 Mingzhe Liu Weidong Gao Xi Han 《Particuology》 SCIE EI CAS CSCD 2012年第4期509-516,共8页
Aerosol absorption coefficient σap involves the additive contribution of both black carbon aerosol (BC) and dust aerosol. The linear statistical regression analysis approach introduced by Fialho et al. (2005) is ... Aerosol absorption coefficient σap involves the additive contribution of both black carbon aerosol (BC) and dust aerosol. The linear statistical regression analysis approach introduced by Fialho et al. (2005) is used to estimate the absorption exponents of BC and dust aerosol absorption coefficients, and further to separate the contributions of these two types of aerosols from the total light absorption coefficient measured in the hinterland of Taklimakan Desert in the spring of 2006. Absorption coefficients are measured by means of a 7-wavelength Aethalometer from 1 March to 31 May and from 1 November to 28 December, 2006. The absorption exponent of BC absorption coefficient α is estimated as (-0.95 ± 0.002) under background weather (supposing the observed absorption coefficient is due only to BC); the estimated absorption exponent of dust aerosol absorption coefficient/5 during the 6 dust storm periods (strong dust storm) is (-2.55 ± 0.009). Decoupling analysis of the measured light absorption coefficients demonstrates that, on average, the light absorptions caused by dust aerosol and BC make up about 50.5% and 49.5% respectively of the total light absorption at 520 nm; during dust weather process periods (dust storm, floating dust, blowing dust), the contribution of dust aerosol to absorption extinction is 60.6% on average; in the hin- terland of desert in spring, dust aerosol is also the major contributor to the total aerosol light absorption, more than that of black carbon aerosol. 展开更多
关键词 Black carbonDustAbsorption coefficientAbsorption exponent of absorptioncoefficientDecoupling of absorption coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部