期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
New Observation of Na2 4^3∑g^+ State by Pulsed Perturbation Facilitated Optical-Optical Double Resonance Spectroscopy
1
作者 Zheng Chen Cheng-zhe Cui +3 位作者 Yao-ming Liu Li Li V. B. Sovkov V. S. Ivanov 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第1期11-14,共4页
Sixty-five new vibronic levels of the Na2 4^3∑g^+ state have been observed in the 33900-35200 cm^-1 energy region above the potential minimum of the ground state by pulsed perturbation facilitated optical-optical do... Sixty-five new vibronic levels of the Na2 4^3∑g^+ state have been observed in the 33900-35200 cm^-1 energy region above the potential minimum of the ground state by pulsed perturbation facilitated optical-optical double resonance (PFOODR) fluorescence excitation spectroscopy. These new data fill the gap between the low-v levels mainly observed by continuous wave (CW) PFOODR spectroscopy and the high-v levels above the 3s+3d limit observed by pulsed PFOODR with predissociation detection, Molecular constants are fitted below potential shelf around the 3s+3d atomic limit with previously published data (mainly observed by CW PFOODR) and these new data. RKR potential curve has been calculated with the new constants. The constants are: Te= 32127.090 cm^-1,ωe=121.4099(0.20720) cm^-1, Be = 0.116287(0.0002300) cm^-1, Re=3.551 A, An error of the RKR potential curve of J. Chem. Phys. 108, 7707 (1998) is corrected. 展开更多
关键词 NA2 Triplet states PFOODR 4^3∑g^+ state STATE Rydberg states
下载PDF
Effect of electron injection in copper-contacted graphene nanoribbons 被引量:1
2
作者 Konstantin A.Simonov Nikolay A.Vinogradov +5 位作者 Alexander S.Vinogradov Alexander V.Generalov Gleb I.Svirskiy Attilio A.Cafolla Nils Martensson Alexei B. Preobrajenski 《Nano Research》 SCIE EI CAS CSCD 2016年第9期2735-2746,共12页
For practical electronic device applications of graphene nanoribbons (GNRs), it is essential to have abrupt and well-defined contacts between the ribbon and the adjacent metal lead. By analogy with graphene, these con... For practical electronic device applications of graphene nanoribbons (GNRs), it is essential to have abrupt and well-defined contacts between the ribbon and the adjacent metal lead. By analogy with graphene, these contacts can induce electron or hole doping, which may significantly affect the I/V characteristics of the device. Cu is among the most popular metals of choice for contact materials. In this study, we investigate the effect of in situ intercalation of Cu on the electronic structure of atomically precise, spatially aligned armchair GNRs of width N = 7 (7-AGNRs) fabricated via a bottom-up method on the Au(788) surface. Scanning tunneling microscopy data reveal that the complete intercalation of about one monolayer of Cu under 7-AGNRs can be facilitated by gentle annealing of the sample at 80 °C. Angle-resolved photoemission spectroscopy (ARPES) data clearly reflect the one-dimensional character of the 7-AGNR band dispersion before and after intercalation. Moreover, ARPES and core-level photoemission results show that intercalation of Cu leads to significant electron injection into the nanoribbons, which causes a pronounced downshift of the valence and conduction bands of the GNR with respect to the Fermi energy (ΔE ~ 0.5 eV). As demonstrated by ARPES and X-ray absorption spectroscopy measurements, the effect of Cu intercalation is restricted to n-doping only, without considerable modification of the band structure of the GNRs. Post-annealing of the 7-AGNRs/Cu/Au(788) system at 200 °C activates the diffusion of Cu into Au and the formation of a Cu-rich surface Au layer. Alloying of intercalated Cu leads to the recovery of the initial position of GNR-related bands with respect to the Fermi energy (E <sub>F</sub>), thus, proving the tunability of the induced n-doping. 展开更多
关键词 graphene nanoribbons bottom-up method copper intercalation charge injection angle-resolved photoemission spectroscopy (ARPES) scanning tunneling microscopy
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部