Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of ...Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of the body during internal or external bleeding. Access to clinical care for wounded military personnel injured on the battlefield is limited and has long delays compared to patients in peacetime. Most of the deaths of wounded military personnel on the battlefield occur within the first hour after being wounded. The most common causes are delay in providing medical care, loss of time for diagnosis, delay in stabilization of pain shock and large blood loss. Some help in overcoming these problems is provided by the data in the individual capsule, which each soldier of the modern army possesses;however, data in an individual capsule is not sufficient to provide emergency medical care in field and hospital conditions. This paper considers a project for development of a smart real-time monitoring wearable system for blood loss and level of shock stress in wounded persons on the battlefield, which provides medical staff in field and hospital conditions with the necessary information to give timely medical care. Although the hospital will require additional information, the basic information about the victims will already be known before he enters the hospital. It is important to emphasize that the key term in this approach is monitoring. It is tracking, and not a one-time measurement of indicators, that is crucial in a valid definition of bleeding.展开更多
The purpose of reoptimization using approximation methods—application of knowledge about the solution of the initial instance I, provided to achieve a better quality of approximation (approximation ratio) of an algor...The purpose of reoptimization using approximation methods—application of knowledge about the solution of the initial instance I, provided to achieve a better quality of approximation (approximation ratio) of an algorithm for determining optimal or close to it solutions of some “minor” changes of instance I. To solve the problem Ins-Max-EkCSP-P (reoptimization of Max-EkCSP-P with the addition of one constraint) with approximation resistant predicate P exists a polynomial threshold (optimal) -approximation algorithm, where the threshold “random” approximation ratio of P). When the unique games conjecture (UGC) is hold there exists a polynomial threshold (optimal) -approximation algorithm (where and the integrality gap of semidefinite relaxation of Max-EkCSP-P problem Z) to solve the problem Ins-Max-EkCSP-P.展开更多
We study for a class of symmetric Levy processes with state space R^n the transition density pt(x) in terms of two one-parameter families of metrics, (dt)t〉o and (δt)t〉o. The first family of metrics describes...We study for a class of symmetric Levy processes with state space R^n the transition density pt(x) in terms of two one-parameter families of metrics, (dt)t〉o and (δt)t〉o. The first family of metrics describes the diagonal term pt (0); it is induced by the characteristic exponent ψ of the Levy process by dr(x, y) = √tψ(x - y). The second and new family of metrics 6t relates to √tψ through the formula exp(-δ^2t(x,y))=F[e^-tψ/pt(0)](x-y),where Y denotes the Fourier transform. Thus we obtain the following "Gaussian" representation of the tran- sition density: pt(x) = pt(O)e^-δ^2t(x,0) where pt(O) corresponds to a volume term related to √tψ and where an "exponential" decay is governed by 5t2. This gives a complete and new geometric, intrinsic interpretation of pt(x).展开更多
文摘Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of the body during internal or external bleeding. Access to clinical care for wounded military personnel injured on the battlefield is limited and has long delays compared to patients in peacetime. Most of the deaths of wounded military personnel on the battlefield occur within the first hour after being wounded. The most common causes are delay in providing medical care, loss of time for diagnosis, delay in stabilization of pain shock and large blood loss. Some help in overcoming these problems is provided by the data in the individual capsule, which each soldier of the modern army possesses;however, data in an individual capsule is not sufficient to provide emergency medical care in field and hospital conditions. This paper considers a project for development of a smart real-time monitoring wearable system for blood loss and level of shock stress in wounded persons on the battlefield, which provides medical staff in field and hospital conditions with the necessary information to give timely medical care. Although the hospital will require additional information, the basic information about the victims will already be known before he enters the hospital. It is important to emphasize that the key term in this approach is monitoring. It is tracking, and not a one-time measurement of indicators, that is crucial in a valid definition of bleeding.
文摘The purpose of reoptimization using approximation methods—application of knowledge about the solution of the initial instance I, provided to achieve a better quality of approximation (approximation ratio) of an algorithm for determining optimal or close to it solutions of some “minor” changes of instance I. To solve the problem Ins-Max-EkCSP-P (reoptimization of Max-EkCSP-P with the addition of one constraint) with approximation resistant predicate P exists a polynomial threshold (optimal) -approximation algorithm, where the threshold “random” approximation ratio of P). When the unique games conjecture (UGC) is hold there exists a polynomial threshold (optimal) -approximation algorithm (where and the integrality gap of semidefinite relaxation of Max-EkCSP-P problem Z) to solve the problem Ins-Max-EkCSP-P.
文摘We study for a class of symmetric Levy processes with state space R^n the transition density pt(x) in terms of two one-parameter families of metrics, (dt)t〉o and (δt)t〉o. The first family of metrics describes the diagonal term pt (0); it is induced by the characteristic exponent ψ of the Levy process by dr(x, y) = √tψ(x - y). The second and new family of metrics 6t relates to √tψ through the formula exp(-δ^2t(x,y))=F[e^-tψ/pt(0)](x-y),where Y denotes the Fourier transform. Thus we obtain the following "Gaussian" representation of the tran- sition density: pt(x) = pt(O)e^-δ^2t(x,0) where pt(O) corresponds to a volume term related to √tψ and where an "exponential" decay is governed by 5t2. This gives a complete and new geometric, intrinsic interpretation of pt(x).