A spurious effect of blowing noise is sometimes detected on fans working at high flow rate, showing a large hump around 4000 Hz on the acoustic spectra. A Tollmien-Shlichtling (TS) effect is suspected, and several c...A spurious effect of blowing noise is sometimes detected on fans working at high flow rate, showing a large hump around 4000 Hz on the acoustic spectra. A Tollmien-Shlichtling (TS) effect is suspected, and several compressible LES are made on aerodynamic profiles to detect and investigate this phenomenon. Vortex shedding is observed at the trailing edge, triggering some density fluctuations when a thin boundary layer exists on the profile upper side. Acoustic waves with length equivalent to the chord are observed. A profile modification is proposed with a camber brought closer to the leading edge. This shape tested on a prototyped fan confirms the weakening of the TS effect.展开更多
Valeo, involved in engine cooling fan system design for many years, is interested in noise prediction tools for axial fans. Thus, this paper describes a two-part study of tonal noise computation. The first part deals ...Valeo, involved in engine cooling fan system design for many years, is interested in noise prediction tools for axial fans. Thus, this paper describes a two-part study of tonal noise computation. The first part deals with the prediction of tonal noise using analytical models. As for the second part, it describes a hybrid approach for predicting tonal noise where the sources are extracted from an Unsteady Reynolds-Averaged Naviers-Stocks (URANS) simulation and then propagated into the far, free field using the Ffowcs Williams and Hawkings' acoustic analogy. The computational domain is meshed with 46 million polyhedral elements and the simulation takes into account the exact geometry of the rotor blades, the stator blades and the shroud. The results from the first part show that analytical models can be used for comparisons between different fan geometries, but are unable to provide accurate noise predictions compared to experimental results. The simulation shows non-periodic blade loading over a whole fan revolution, and different blade loading between the blades. This introduces some bias in the assessment of the acoustic performance of the fan. Overall, the results from the hybrid method are in accordance with the experimental results.展开更多
文摘A spurious effect of blowing noise is sometimes detected on fans working at high flow rate, showing a large hump around 4000 Hz on the acoustic spectra. A Tollmien-Shlichtling (TS) effect is suspected, and several compressible LES are made on aerodynamic profiles to detect and investigate this phenomenon. Vortex shedding is observed at the trailing edge, triggering some density fluctuations when a thin boundary layer exists on the profile upper side. Acoustic waves with length equivalent to the chord are observed. A profile modification is proposed with a camber brought closer to the leading edge. This shape tested on a prototyped fan confirms the weakening of the TS effect.
文摘Valeo, involved in engine cooling fan system design for many years, is interested in noise prediction tools for axial fans. Thus, this paper describes a two-part study of tonal noise computation. The first part deals with the prediction of tonal noise using analytical models. As for the second part, it describes a hybrid approach for predicting tonal noise where the sources are extracted from an Unsteady Reynolds-Averaged Naviers-Stocks (URANS) simulation and then propagated into the far, free field using the Ffowcs Williams and Hawkings' acoustic analogy. The computational domain is meshed with 46 million polyhedral elements and the simulation takes into account the exact geometry of the rotor blades, the stator blades and the shroud. The results from the first part show that analytical models can be used for comparisons between different fan geometries, but are unable to provide accurate noise predictions compared to experimental results. The simulation shows non-periodic blade loading over a whole fan revolution, and different blade loading between the blades. This introduces some bias in the assessment of the acoustic performance of the fan. Overall, the results from the hybrid method are in accordance with the experimental results.