We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess ch...We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.展开更多
The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under diffe...The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.展开更多
The improvement of the photocatalytic performance of TiO_(2) nanofibers(NFs),prepared by electrospinning,is achieved by surface modification with the rhodizonic acid(RhA).The condensation reaction between hydroxyl gro...The improvement of the photocatalytic performance of TiO_(2) nanofibers(NFs),prepared by electrospinning,is achieved by surface modification with the rhodizonic acid(RhA).The condensation reaction between hydroxyl groups from TiO_(2) NFs and RhA is accompanied by the red-shift of optical absorption due to interfacial charge transfer(ICT)complex formation.Crystal structure,morphology,and optical properties of unmodified and surface-modified TiO_(2) NFs were analyzed.The photocatalytic performance of prepared samples has been examined through degradation of organic dye methylene blue.Superior photocatalytic activity of surface-modified TiO_(2) NFs with RhA is attributed to their enhanced optical properties,i.e.,the ability to harvest the photon energy in the visible spectral range.展开更多
基金Project supported by the Ministry of Education,Science and Technological Development of the Republic of Serbiathe Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (Grant No.K2-2019-010)the Project within the Cooperation Agreement between the JINR,Dubna,Russian Federation and Ministry of Education and Science of the Republic of Serbia。
文摘We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed.
基金This work was financially supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia through Project Nos.ON174004 and ON172019the PhD fellowship of Slađana Laketić.
文摘The effects of picosecond Nd:YAG laser irradiation on chemical and morphological surface characteristics of the commercially pure titanium and Ti–13Nb–13Zr alloy in air and argon atmospheres were studied under different laser output energy values.During the interaction of laser irradiation with the investigated materials,a part of the energy was absorbed on the target surface,influencing surface modifications.Laser beam interaction with the target surface resulted in various morphological alterations,resulting in crater formation and the presence of microcracks and hydrodynamic structures.Moreover,different chemical changes were induced on the target materials’surfaces,resulting in the titanium oxide formation in the irradiation-affected area and consequently increasing the irradiation energy absorption.Given the high energy absorption at the site of interaction,the dimensions of the surface damaged area increased.Consequently,surface roughness increased.The appearance of surface oxides also led to the increased material hardness in the surface-modified area.Observed chemical and morphological changes were pronounced after laser irradiation of the Ti–13Nb–13Zr alloy surface.
基金The authors thank the National Key Research and Development Program of China(2016YFA0201702/2016YFA0201700)the Shanghai Natural Science Foundation(19ZR1400900)+3 种基金the Science and Technology Commission of Shanghai Municipality(16JC1400700)the Fundamental Research Funds for the Central Universities(Grant No.2232018A3-01)the Program for Innovative Research Team at the University of Ministry of Education of China(IRT_16R13)the International Joint Laboratory for Advanced Fiber and Low-dimension Materials(18520750400).
文摘The improvement of the photocatalytic performance of TiO_(2) nanofibers(NFs),prepared by electrospinning,is achieved by surface modification with the rhodizonic acid(RhA).The condensation reaction between hydroxyl groups from TiO_(2) NFs and RhA is accompanied by the red-shift of optical absorption due to interfacial charge transfer(ICT)complex formation.Crystal structure,morphology,and optical properties of unmodified and surface-modified TiO_(2) NFs were analyzed.The photocatalytic performance of prepared samples has been examined through degradation of organic dye methylene blue.Superior photocatalytic activity of surface-modified TiO_(2) NFs with RhA is attributed to their enhanced optical properties,i.e.,the ability to harvest the photon energy in the visible spectral range.