Sheet-metal products are integral parts of engineering industries and academia research. Various testing techniques have revealed the deformation behaviors of sheet metals under complex stress states. Information obta...Sheet-metal products are integral parts of engineering industries and academia research. Various testing techniques have revealed the deformation behaviors of sheet metals under complex stress states. Information obtained from tensile and compression tests, however, are insufficient for the identification of material parameters relevant to modern constitutive laws, which require experimental setups capable of generating various loading conditions and applying great amounts of strain to sheet metals. In-plane shear testing has emerged as an important method to overcome the challenges associated with tension and compression tests and can provide additional information about deformation behaviors under large plastic strains. Materials such as Mg alloys with poor levels of both ductility and formability cannot accommodate large plastic strains. Therefore, tension and compression tests have limitations in explaining the material behaviors that occur during sheet metal forming where large plastic strains are introduced. Many studies have been conducted to explain the deformation behaviors of Mg alloys under shear deformation techniques. These include severe plastic deformation(SPD), especially the equal channel angular pressing(ECAP)and equal channel angular extrusion, rolling combined with shear deformation i.e. differential speed rolling(DSR), and also in-plane shear for sheet metals, particularly under large levels of plastic strain. These in-plane shear technique involves the Miyauchi shear test, ASTM shear test, and twin bridge shear tests. Moreover, many experimental results have revealed that the evolution of microstructure and texture during in-plane shear is closely related to the failure behavior of materials. Therefore, this review is focused on techniques for in-plane shear testing that have been reported thus far, on the effect of in-plane shear on the microstructure development of Mg alloy sheets, and on the usefulness of in-plane shear testing to evaluate the formability of Mg alloy sheets.展开更多
The engineering characteristics of the soil,soil-fly ash and fly ash-lime,were examined to utilize as base layer material in civil construction.The influence of fly ash percentage and the effect of curing on Californi...The engineering characteristics of the soil,soil-fly ash and fly ash-lime,were examined to utilize as base layer material in civil construction.The influence of fly ash percentage and the effect of curing on California bearing ratio(CBR)and unconfined compressive strength(UCS),of soil and soil-fly ash mixing and layered system were examined to estimate the optimum quantity.The volumetric swelling of the optimal mixture was estimated to be within the allowable limits.Scanning microscope analysis and X-ray diffraction tests were performed.A model test analyses with three layers were conducted by finite element method and stress-strain behavior was observed.展开更多
The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inho...The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inhomogeneous materials,complex morphology,and erratic joints.Most studies concerning the failure of rock slopes primarily focused on determining Factor of Safety(FoS)and Critical Slip Surface(CSS).In this article,the effect of inclined tension crack on a rock slope failure is studied numerically with Shear Strength Reduction Factor(SRF)method.An inclined Tension Crack(TC)influences the magnitude and location of the rock slope’s Critical Shear Strength Reduction Factor(CSRF).Certainly,inclined cracks are more prone to cause the failure of the slope than the vertical TC.Yet,all tension cracks do not lead to failure of the slope mass.The effect of the crest distance of the tension crack is also investigated.The numerical results do not show any significant change in the magnitude of CSRF unless the tip of the TC is very near to the crest of the slope.ATC is also replaced with a joint,and the results differ from the corresponding TC.These results are discussed regarding shear stress and Critical Slip Surface(CSS).展开更多
In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gu...In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions.展开更多
T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions ...T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however,in specific applications these joints undergo pull loading.De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure.Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied.In this study,Finite Element Analysis has been performed using cohesive contact interactions on a composite T-joint to simulate the pull out test conditions.A simplified shell based model coupled with CZM is proposed,which can evaluate the failure initiation and progression accurately with lesser computational efforts.The final failure occurred at a displacement of 4.71 mm at the computed failure load of 472.57 kgf for basic configuration.Computed Failure load for the padded configuration is 672.8 kgf and corresponding displacement is 4.6 mm.The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted failure displacements and failure load calculated were correlating reasonably well with the experiment.展开更多
The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility ...The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility demand, on the eff ective periods, is investigated, and inelastic site amplifi cation is shown to be strongly correlated to the normalized eff ective period. Two non-dimensional parameters, analogous to the conventional site amplifi cation factors in codes, are defi ned to quantify the inelastic site amplifi cation. It is shown that the inelastic site amplifi cation factor (i.e. ratio of constant ductility spectral ordinates at soil site to those at rock outcrop) is able to represent the site eff ects more clearly, as compared to the inelastic site amplifi cation ratio (i.e. ratio of inelastic spectral ordinates at soil site to the corresponding elastic spectral ordinates at rock outcrop). Further, the peak in the amplifi cation factor corresponding to the eff ective site period diminishes rapidly with increasing ductility demand.展开更多
In the present study,AZ91 Mg alloy was heat treated at 410℃ for 6,12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior.The effect of soaking time on the amount and distri...In the present study,AZ91 Mg alloy was heat treated at 410℃ for 6,12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior.The effect of soaking time on the amount and distribution of Mg 17 Al 12(β-phase)was analyzed under the optical microscope.Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time,which can be attributed to the solid solution strengthening.The influence of super saturatedα-grains on reducing the cutting force(F z)with respect to increased cutting speed was observed as prominent.The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests.Surprisingly,corrosion rate of heat treated samples was observed as increased compared with the base material.From the results,it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturatedα-grains through heat treatment but at the cost of losing corrosion resistance.展开更多
This paper presents discrete wavelet transform (DWT) and its inverse (IDWT) with Haar wavelets as tools to compute the variable size interpolated versions of an image at optimum computational load. As a human obse...This paper presents discrete wavelet transform (DWT) and its inverse (IDWT) with Haar wavelets as tools to compute the variable size interpolated versions of an image at optimum computational load. As a human observer moves closer to or farther from a scene, the retinal image of the scene zooms in or out, respectively. This zooming in or out can be modeled using variable scale interpolation. The paper proposes a novel way of applying DWT and IDWT in a piecewise manner by non-uniform down- or up-sampling of the images to achieve partially sampled versions of the images. The partially sampled versions are then aggregated to achieve the final variable scale interpolated images. The non-uniform down- or up-sampling here is a function of the required scale of interpolation. Appropriate zero padding is used to make the images suitable for the required non-uniform sampling and the subsequent interpolation to the required scale. The concept of zeroeth level DWT is introduced here, which works as the basis for interpolating the images to achieve bigger size than the original one. The main emphasis here is on the computation of variable size images at less computational load, without compromise of quality of images. The interpolated images to different sizes and the reconstructed images are benchmarked using the statistical parameters and visual comparison. It has been found that the proposed approach performs better as compared to bilinear and bicubic interpolation techniques.展开更多
Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable succes...Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable successive ionic layer adsorption and reaction(SILAR)approach has been adopted to deposit nanostructured VS_2onto flexible and light-weight stainless steel(SS)substrate towards supercapacitor application.The nanocrystalline nature with hexagonal crystal structure has been confirmed for VS_2through structural analysis.The VS_2electrode exhibits a maximum specific capacitance of 349 F g^(-1)with a super stable behavior in three-electrode liquid-state configuration.Fabricated flexible symmetric solid-state supercapacitor(FSSC)device using gel electrolyte yields specific power of 1.5 k W kg^(-1)(specific energy of 25.9 Wh kg^(-1))with a widen voltage window of 1.6 V.A red LED has been glown for30 s using the system consisted of two devices in series combination.Furthermore,the system glows a combination of 21 red LEDs network with acronym‘VNIT’,demonstrating commercial exposure.The attribution of device demonstration even under mechanical stress holds great promise towards advanced flexible electronics application.展开更多
In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of sp...In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.展开更多
In the present work,the effect of process parameters on joining of AZ91 Mg alloy and Al6063 aluminum alloy sheets during friction stir welding(FSP)was studied.A successful joint was achieved at 1100 r.p.m.tool rotatio...In the present work,the effect of process parameters on joining of AZ91 Mg alloy and Al6063 aluminum alloy sheets during friction stir welding(FSP)was studied.A successful joint was achieved at 1100 r.p.m.tool rotational speed and 25 mm/min tool travel speed.Combination of tool rotational speed and tool travel speed has observed a profound effect on the material flow mechanisms at the nugget zone.From the microstructural studies,the joint formation was observed as mainly due to mechanical mixing of the materials.The level of metallurgical continuity at the nugget zone was observed as poor and a sharp interface at the joint was noticed.The microhardness measurements across the weld joint also revealed the lack of establishment of a perfect metallurgical bonding.X-ray diffraction analysis of weld zone showed presence of both magnesium and aluminum.Hence from the preliminary observations,it can be understood that the joining of AZ91 Mg alloy and Al6063 alloy can be achieved by FSP;however,complex issues in material mixing still need further investigations.展开更多
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
Drinking water with higher fluoride levels results in serious irremediable health problems that have attained a startle all over the world.Researches focused towards deflouridation through the application of biosorben...Drinking water with higher fluoride levels results in serious irremediable health problems that have attained a startle all over the world.Researches focused towards deflouridation through the application of biosorbents prepared from various plants are finding greater scope and significance.Present research is done on Cocos nucifera Linn.(coconut tree) one of the very commonly available plants throughout Kerala and around the globe.An adsorbent developed from the root portion of C.nucifera Linn.is used in the present study.Equilibrium study revealed that the fluoride uptake capacity is quite significant and linearly increases with initial adsorbate concentration.The adsorption data is analyzed for Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models at varying initial adsorbate concentrations(2–25 mg·L^(-1)).It is found that the adsorption of fluoride onto C.nucifera Linn.root adsorbent follows Langmuir isotherm.Langmuir isotherm constants "a" and "b" obtained are 2.037 mg·g^(-1) and 0.823 L·mg^(-1) at an adsorbent dose of 8 g·L^(-1) and temperature(26 ± 1) ℃.The mean free sorption energy, E obtained, is 9.13 kJ ·mol^(-1) which points out that the adsorption of fluoride onto C.nucifera Linn.root adsorbent is by chemisorption mechanism.The kinetic study also supports chemisorption with adsorption data fitting well with a pseudo-second-order kinetic model with an estimated rate constant K_2 of 0.2935 g·mg^(-1) min at an equilibrium contact time of 90 min.The thermodynamic study indicated the spontaneous and endothermic nature(ΔH =12.728 kJ·mol^(-1)) of fluoride adsorption onto the C.nucifera Linn.root adsorbent.Scanning Electron Microscopy(SEM), BET, FTIR, and EDX methods were used to analyze the surface morphology of adsorbent before and after fluoride adsorption process.Experiments on deflouridation using C.nucifera Linn.root adsorbent application on fluoride contaminated ground water samples from fields showed encouraging results.展开更多
In the present work,multi walled carbon nanotubes(MWCNT)reinforced magnesium(Mg)matrix composite was fabricated by friction stir processing(FSP)with an aim to explore its mechanical and electrochemical behavior.Micros...In the present work,multi walled carbon nanotubes(MWCNT)reinforced magnesium(Mg)matrix composite was fabricated by friction stir processing(FSP)with an aim to explore its mechanical and electrochemical behavior.Microstructural observations showed that the thickness of the produced composite layer was in the range of 2500μm.FSP resulted uniform distribution of CNT near the surface while agglomerated layers in the subsurface.Grain refinement of Mg achieved by FSP improved the hardness but significant enhancement in the hardness value was observed for FSPed MWCNT/Mg composites.Potentiodynamic polarization studies revealed that the increase in corrosion current density was observed for MWCNT/Mg composite compared with grain refined Mg and pure Mg,implying the significance of secondary phase(MWCNT)in decreasing the corrosion resistance of the composite.展开更多
The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent duc...The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established.展开更多
In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then...In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.展开更多
Wire electric discharge machining(WEDM)process is used for precision manufacturing.The accuracy of machining is function of various parameters like current,voltage,wire speed,gap between wire and work piece,wire oscil...Wire electric discharge machining(WEDM)process is used for precision manufacturing.The accuracy of machining is function of various parameters like current,voltage,wire speed,gap between wire and work piece,wire oscillation,work material,wire material,etc.Once the process parameters are selected,it is important that the wire vibrations are less to obtain a good surface finish.Due to the importance of wire vibration in obtaining the surface finish,it is necessary to study the wire vibration.This paper discusses different models of wire vibration presented in the literature and simulates a closed form solution of wire vibration using MATLAB.The transverse vibration of wire is analysed as forced vibration of moving wire with excitation due to the sparks during machining.The resulting partial differential equation is solved by using finite difference method and vibration is also simulated in the finite element package‘ANSYS’.The wire behaviour is investigated under different operating conditions and results of the two methods are展开更多
The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-di...The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-dimensional equations are simplified under the assumption of long wavelength approximation. The simplified equations are solved for the stream function, temperature, and axial pressure gradient by using a regular perturbation method. The expression for pressure rise is computed numerically. The profiles of velocity, pressure gradient, temperature, heat transfer coefficient and stream function are sketched and interpreted for various embedded parameters and also the behavior of stream function for various wave forms is discussed through graphs. It is observed that the peristaltic velocity increases from porous medium to non-porous medium, the magnetic effects have increasing effect on the temperature, and the size of the trapped bolus decreases with the increasing of magnetic effects while the trend is reversed with the increasing of Darcy number. Moreover, limiting solutions of our problem are in close agreement with the corresponding results of the Newtonian fluid model.展开更多
Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to cat...Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to categorize the damage in quantifiable damage states. Among various parameters to quantify the damage states, the top drift of frame staging can be conveniently correlated to the different damage levels. In literature, drift limits corresponding to different damage states of the frame staging of the elevated water tank are not available. In the present study, drift limits for RC frame staging in elevated water tanks corresponding to different seismic damage states have been proposed. Various damage states of the elevated water tank have been determined using the Park and Ang damage index. The Park and Ang damage index utilizes results of both pushover analysis and incremental dynamic analysis. Twelve models of elevated water tanks have been developed considering variation in staging height and tank capacity. Incremental dynamic analysis has been performed using the suite of twelve actual earthquake ground motions. Based on the regression analysis between damage indexes and drift, limiting drift values for each damage state are proposed.展开更多
Groundwater is one of the most important resources, its monitoring and optimized management has now become the priority to satisfy the demand of rapidly increasing population. In many developing countries, optimized g...Groundwater is one of the most important resources, its monitoring and optimized management has now become the priority to satisfy the demand of rapidly increasing population. In many developing countries, optimized groundwater level monitoring networks are rarely designed to build up a strong groundwater level data base, and to reduce operation time and cost. The paper presents application of geostatistical method to optimize existing network of observation wells for 18 sub-watersheds within the Wainganga Sub-basin located in the central part of India. The average groundwater level fluctuation(GWLF) from 37 observation wells is compared with parameters like lineament density, recharge, density of irrigation wells, land use and hydrogeology(LiRDLH) of Wainganga Sub-basin and analyzed stochastically in Geographic Information System(GIS) environment using simple, ordinary, disjunctive and universal kriging methods. Semivariogram analyses have been performed separately for all kriging methods to fit the best theoretical model with experimental model. Results from gaussian, spherical, exponential and circular theoretical models were compared with those of experimental models obtained from the groundwater level data. Spatial analyses conclude that the exponential semivariogram model obtained from ordinary kriging gives the best fit model. Study demonstrates that ordinary kriging gives the optimal solution and additional number of observation wells can be added utilizing the error variance for optimal design of groundwater level monitoring networks. This study describes the use of Geostatistics methods in GIS to predict the groundwater level and upgrade groundwater level monitoring networks from the randomly distributed observation wells considering multiple parameters such as GWLF and LiRDLH. The method proposed in the present study is observed to be an efficient method for selecting observation well locations in a complex geological set up. The study concludes that minimum 82 wells are required for proper monitoring of groundwater level in the study area.展开更多
基金financially supported by the Science and Engineering Research Board (SERB)a statutory body of the Department of Science&Technology (DST)+1 种基金Government of India through the Start-up Research Grant (SRG) scheme (File No. SRG/2020/000341)National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(NRF-2020R1A2C1010134)。
文摘Sheet-metal products are integral parts of engineering industries and academia research. Various testing techniques have revealed the deformation behaviors of sheet metals under complex stress states. Information obtained from tensile and compression tests, however, are insufficient for the identification of material parameters relevant to modern constitutive laws, which require experimental setups capable of generating various loading conditions and applying great amounts of strain to sheet metals. In-plane shear testing has emerged as an important method to overcome the challenges associated with tension and compression tests and can provide additional information about deformation behaviors under large plastic strains. Materials such as Mg alloys with poor levels of both ductility and formability cannot accommodate large plastic strains. Therefore, tension and compression tests have limitations in explaining the material behaviors that occur during sheet metal forming where large plastic strains are introduced. Many studies have been conducted to explain the deformation behaviors of Mg alloys under shear deformation techniques. These include severe plastic deformation(SPD), especially the equal channel angular pressing(ECAP)and equal channel angular extrusion, rolling combined with shear deformation i.e. differential speed rolling(DSR), and also in-plane shear for sheet metals, particularly under large levels of plastic strain. These in-plane shear technique involves the Miyauchi shear test, ASTM shear test, and twin bridge shear tests. Moreover, many experimental results have revealed that the evolution of microstructure and texture during in-plane shear is closely related to the failure behavior of materials. Therefore, this review is focused on techniques for in-plane shear testing that have been reported thus far, on the effect of in-plane shear on the microstructure development of Mg alloy sheets, and on the usefulness of in-plane shear testing to evaluate the formability of Mg alloy sheets.
文摘The engineering characteristics of the soil,soil-fly ash and fly ash-lime,were examined to utilize as base layer material in civil construction.The influence of fly ash percentage and the effect of curing on California bearing ratio(CBR)and unconfined compressive strength(UCS),of soil and soil-fly ash mixing and layered system were examined to estimate the optimum quantity.The volumetric swelling of the optimal mixture was estimated to be within the allowable limits.Scanning microscope analysis and X-ray diffraction tests were performed.A model test analyses with three layers were conducted by finite element method and stress-strain behavior was observed.
文摘The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inhomogeneous materials,complex morphology,and erratic joints.Most studies concerning the failure of rock slopes primarily focused on determining Factor of Safety(FoS)and Critical Slip Surface(CSS).In this article,the effect of inclined tension crack on a rock slope failure is studied numerically with Shear Strength Reduction Factor(SRF)method.An inclined Tension Crack(TC)influences the magnitude and location of the rock slope’s Critical Shear Strength Reduction Factor(CSRF).Certainly,inclined cracks are more prone to cause the failure of the slope than the vertical TC.Yet,all tension cracks do not lead to failure of the slope mass.The effect of the crest distance of the tension crack is also investigated.The numerical results do not show any significant change in the magnitude of CSRF unless the tip of the TC is very near to the crest of the slope.ATC is also replaced with a joint,and the results differ from the corresponding TC.These results are discussed regarding shear stress and Critical Slip Surface(CSS).
文摘In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions.
文摘T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however,in specific applications these joints undergo pull loading.De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure.Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied.In this study,Finite Element Analysis has been performed using cohesive contact interactions on a composite T-joint to simulate the pull out test conditions.A simplified shell based model coupled with CZM is proposed,which can evaluate the failure initiation and progression accurately with lesser computational efforts.The final failure occurred at a displacement of 4.71 mm at the computed failure load of 472.57 kgf for basic configuration.Computed Failure load for the padded configuration is 672.8 kgf and corresponding displacement is 4.6 mm.The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted failure displacements and failure load calculated were correlating reasonably well with the experiment.
文摘The available models for eff ective periods of site and structure are reviewed in context of frequency tuning in the inelastic seismic response of soil-structure system. The eff ect of seismic intensity and ductility demand, on the eff ective periods, is investigated, and inelastic site amplifi cation is shown to be strongly correlated to the normalized eff ective period. Two non-dimensional parameters, analogous to the conventional site amplifi cation factors in codes, are defi ned to quantify the inelastic site amplifi cation. It is shown that the inelastic site amplifi cation factor (i.e. ratio of constant ductility spectral ordinates at soil site to those at rock outcrop) is able to represent the site eff ects more clearly, as compared to the inelastic site amplifi cation ratio (i.e. ratio of inelastic spectral ordinates at soil site to the corresponding elastic spectral ordinates at rock outcrop). Further, the peak in the amplifi cation factor corresponding to the eff ective site period diminishes rapidly with increasing ductility demand.
文摘In the present study,AZ91 Mg alloy was heat treated at 410℃ for 6,12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior.The effect of soaking time on the amount and distribution of Mg 17 Al 12(β-phase)was analyzed under the optical microscope.Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time,which can be attributed to the solid solution strengthening.The influence of super saturatedα-grains on reducing the cutting force(F z)with respect to increased cutting speed was observed as prominent.The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests.Surprisingly,corrosion rate of heat treated samples was observed as increased compared with the base material.From the results,it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturatedα-grains through heat treatment but at the cost of losing corrosion resistance.
文摘This paper presents discrete wavelet transform (DWT) and its inverse (IDWT) with Haar wavelets as tools to compute the variable size interpolated versions of an image at optimum computational load. As a human observer moves closer to or farther from a scene, the retinal image of the scene zooms in or out, respectively. This zooming in or out can be modeled using variable scale interpolation. The paper proposes a novel way of applying DWT and IDWT in a piecewise manner by non-uniform down- or up-sampling of the images to achieve partially sampled versions of the images. The partially sampled versions are then aggregated to achieve the final variable scale interpolated images. The non-uniform down- or up-sampling here is a function of the required scale of interpolation. Appropriate zero padding is used to make the images suitable for the required non-uniform sampling and the subsequent interpolation to the required scale. The concept of zeroeth level DWT is introduced here, which works as the basis for interpolating the images to achieve bigger size than the original one. The main emphasis here is on the computation of variable size images at less computational load, without compromise of quality of images. The interpolated images to different sizes and the reconstructed images are benchmarked using the statistical parameters and visual comparison. It has been found that the proposed approach performs better as compared to bilinear and bicubic interpolation techniques.
文摘Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable successive ionic layer adsorption and reaction(SILAR)approach has been adopted to deposit nanostructured VS_2onto flexible and light-weight stainless steel(SS)substrate towards supercapacitor application.The nanocrystalline nature with hexagonal crystal structure has been confirmed for VS_2through structural analysis.The VS_2electrode exhibits a maximum specific capacitance of 349 F g^(-1)with a super stable behavior in three-electrode liquid-state configuration.Fabricated flexible symmetric solid-state supercapacitor(FSSC)device using gel electrolyte yields specific power of 1.5 k W kg^(-1)(specific energy of 25.9 Wh kg^(-1))with a widen voltage window of 1.6 V.A red LED has been glown for30 s using the system consisted of two devices in series combination.Furthermore,the system glows a combination of 21 red LEDs network with acronym‘VNIT’,demonstrating commercial exposure.The attribution of device demonstration even under mechanical stress holds great promise towards advanced flexible electronics application.
文摘In the railway bridge analysis and design method,dynamic train loads are regarded as static loads enhanced by an impact factor(IF).The IF coefficients for various railway bridges have been reported as a function of span length or frequency of the bridges in Eurocode(2003).However,these IF coefficient values neglect the effects of very high speeds(>200 km/h)and soil-structure interaction(SSI).In this work,a comprehensive study to assess the impact factor coefficients of mid-span vertical displacements for continuous and integral railway bridges subjected to high-speed moving loads is reported.Three different configurations,each for the three-dimensional(3D)continuous and integral bridge,are considered.Also,single-track(1-T)and two-track(2-T)“real train”loading cases for both these bridge types are considered.Subsequently,finite element analysis of the full-scale 3D bridge models,to identify their IF values,considering the effects of SSI for three different soil conditions,is conducted.The IF values obtained from the study for both bridge types are comparable and are greater than the values recommended by Eurocode(2003).The results reveal that with a loss of soil stiffness,the IF value reduces;thus,it confirms the importance of SSI analysis.
文摘In the present work,the effect of process parameters on joining of AZ91 Mg alloy and Al6063 aluminum alloy sheets during friction stir welding(FSP)was studied.A successful joint was achieved at 1100 r.p.m.tool rotational speed and 25 mm/min tool travel speed.Combination of tool rotational speed and tool travel speed has observed a profound effect on the material flow mechanisms at the nugget zone.From the microstructural studies,the joint formation was observed as mainly due to mechanical mixing of the materials.The level of metallurgical continuity at the nugget zone was observed as poor and a sharp interface at the joint was noticed.The microhardness measurements across the weld joint also revealed the lack of establishment of a perfect metallurgical bonding.X-ray diffraction analysis of weld zone showed presence of both magnesium and aluminum.Hence from the preliminary observations,it can be understood that the joining of AZ91 Mg alloy and Al6063 alloy can be achieved by FSP;however,complex issues in material mixing still need further investigations.
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
文摘Drinking water with higher fluoride levels results in serious irremediable health problems that have attained a startle all over the world.Researches focused towards deflouridation through the application of biosorbents prepared from various plants are finding greater scope and significance.Present research is done on Cocos nucifera Linn.(coconut tree) one of the very commonly available plants throughout Kerala and around the globe.An adsorbent developed from the root portion of C.nucifera Linn.is used in the present study.Equilibrium study revealed that the fluoride uptake capacity is quite significant and linearly increases with initial adsorbate concentration.The adsorption data is analyzed for Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models at varying initial adsorbate concentrations(2–25 mg·L^(-1)).It is found that the adsorption of fluoride onto C.nucifera Linn.root adsorbent follows Langmuir isotherm.Langmuir isotherm constants "a" and "b" obtained are 2.037 mg·g^(-1) and 0.823 L·mg^(-1) at an adsorbent dose of 8 g·L^(-1) and temperature(26 ± 1) ℃.The mean free sorption energy, E obtained, is 9.13 kJ ·mol^(-1) which points out that the adsorption of fluoride onto C.nucifera Linn.root adsorbent is by chemisorption mechanism.The kinetic study also supports chemisorption with adsorption data fitting well with a pseudo-second-order kinetic model with an estimated rate constant K_2 of 0.2935 g·mg^(-1) min at an equilibrium contact time of 90 min.The thermodynamic study indicated the spontaneous and endothermic nature(ΔH =12.728 kJ·mol^(-1)) of fluoride adsorption onto the C.nucifera Linn.root adsorbent.Scanning Electron Microscopy(SEM), BET, FTIR, and EDX methods were used to analyze the surface morphology of adsorbent before and after fluoride adsorption process.Experiments on deflouridation using C.nucifera Linn.root adsorbent application on fluoride contaminated ground water samples from fields showed encouraging results.
文摘In the present work,multi walled carbon nanotubes(MWCNT)reinforced magnesium(Mg)matrix composite was fabricated by friction stir processing(FSP)with an aim to explore its mechanical and electrochemical behavior.Microstructural observations showed that the thickness of the produced composite layer was in the range of 2500μm.FSP resulted uniform distribution of CNT near the surface while agglomerated layers in the subsurface.Grain refinement of Mg achieved by FSP improved the hardness but significant enhancement in the hardness value was observed for FSPed MWCNT/Mg composites.Potentiodynamic polarization studies revealed that the increase in corrosion current density was observed for MWCNT/Mg composite compared with grain refined Mg and pure Mg,implying the significance of secondary phase(MWCNT)in decreasing the corrosion resistance of the composite.
文摘The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established.
基金the support of CSIR,Govt.of India,Grant No.-25(0215)/13/EMR-II
文摘In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.
文摘Wire electric discharge machining(WEDM)process is used for precision manufacturing.The accuracy of machining is function of various parameters like current,voltage,wire speed,gap between wire and work piece,wire oscillation,work material,wire material,etc.Once the process parameters are selected,it is important that the wire vibrations are less to obtain a good surface finish.Due to the importance of wire vibration in obtaining the surface finish,it is necessary to study the wire vibration.This paper discusses different models of wire vibration presented in the literature and simulates a closed form solution of wire vibration using MATLAB.The transverse vibration of wire is analysed as forced vibration of moving wire with excitation due to the sparks during machining.The resulting partial differential equation is solved by using finite difference method and vibration is also simulated in the finite element package‘ANSYS’.The wire behaviour is investigated under different operating conditions and results of the two methods are
文摘The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-dimensional equations are simplified under the assumption of long wavelength approximation. The simplified equations are solved for the stream function, temperature, and axial pressure gradient by using a regular perturbation method. The expression for pressure rise is computed numerically. The profiles of velocity, pressure gradient, temperature, heat transfer coefficient and stream function are sketched and interpreted for various embedded parameters and also the behavior of stream function for various wave forms is discussed through graphs. It is observed that the peristaltic velocity increases from porous medium to non-porous medium, the magnetic effects have increasing effect on the temperature, and the size of the trapped bolus decreases with the increasing of magnetic effects while the trend is reversed with the increasing of Darcy number. Moreover, limiting solutions of our problem are in close agreement with the corresponding results of the Newtonian fluid model.
文摘Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to categorize the damage in quantifiable damage states. Among various parameters to quantify the damage states, the top drift of frame staging can be conveniently correlated to the different damage levels. In literature, drift limits corresponding to different damage states of the frame staging of the elevated water tank are not available. In the present study, drift limits for RC frame staging in elevated water tanks corresponding to different seismic damage states have been proposed. Various damage states of the elevated water tank have been determined using the Park and Ang damage index. The Park and Ang damage index utilizes results of both pushover analysis and incremental dynamic analysis. Twelve models of elevated water tanks have been developed considering variation in staging height and tank capacity. Incremental dynamic analysis has been performed using the suite of twelve actual earthquake ground motions. Based on the regression analysis between damage indexes and drift, limiting drift values for each damage state are proposed.
基金Under the auspices of the Visvesvaraya National Institute of Technology(Nagpur)Centrally Funded Technical Institution Under the Ministry of Human Resource Development(No.l7-2/2014-TS.I)Department of Science and Technology,Government of India(No.SR/S9/Z-09/2012)
文摘Groundwater is one of the most important resources, its monitoring and optimized management has now become the priority to satisfy the demand of rapidly increasing population. In many developing countries, optimized groundwater level monitoring networks are rarely designed to build up a strong groundwater level data base, and to reduce operation time and cost. The paper presents application of geostatistical method to optimize existing network of observation wells for 18 sub-watersheds within the Wainganga Sub-basin located in the central part of India. The average groundwater level fluctuation(GWLF) from 37 observation wells is compared with parameters like lineament density, recharge, density of irrigation wells, land use and hydrogeology(LiRDLH) of Wainganga Sub-basin and analyzed stochastically in Geographic Information System(GIS) environment using simple, ordinary, disjunctive and universal kriging methods. Semivariogram analyses have been performed separately for all kriging methods to fit the best theoretical model with experimental model. Results from gaussian, spherical, exponential and circular theoretical models were compared with those of experimental models obtained from the groundwater level data. Spatial analyses conclude that the exponential semivariogram model obtained from ordinary kriging gives the best fit model. Study demonstrates that ordinary kriging gives the optimal solution and additional number of observation wells can be added utilizing the error variance for optimal design of groundwater level monitoring networks. This study describes the use of Geostatistics methods in GIS to predict the groundwater level and upgrade groundwater level monitoring networks from the randomly distributed observation wells considering multiple parameters such as GWLF and LiRDLH. The method proposed in the present study is observed to be an efficient method for selecting observation well locations in a complex geological set up. The study concludes that minimum 82 wells are required for proper monitoring of groundwater level in the study area.