期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
汽车电池管理市场是否已准备好标准化?
1
作者 Bart De Cock Serge Peeters Jeroen Büscher 《电子产品世界》 2020年第7期15-18,39,共5页
不断变化的BMS要求正在推动CVM IC供应商进行大量的开发工作。同时,缺乏标准接口使OEM和电池系统制造商很难更换CVM IC供应商。不同的OEM厂商总是会有不同的需求,因此基于模块和基于单元的BMS方案将并存,有线或无线以及有无微控制器。... 不断变化的BMS要求正在推动CVM IC供应商进行大量的开发工作。同时,缺乏标准接口使OEM和电池系统制造商很难更换CVM IC供应商。不同的OEM厂商总是会有不同的需求,因此基于模块和基于单元的BMS方案将并存,有线或无线以及有无微控制器。如果将第二次使用的要求考虑在内,并选择一些标准的BMS内部接口,则投资效率将会提高。为了增加潜在方案的灵活性并实现新兴标准,提出了分两步走的方法,第一步是在独立的CVM和通信功能之间创建一个行业范围内的类似于SPI的标准接口。 展开更多
关键词 汽车 BMS CVM EV PHEV
下载PDF
Direct Load Control of Thermostatically Controlled Loads Based on Sparse Observations Using Deep Reinforcement Learning 被引量:2
2
作者 Frederik Ruelens Bert J.Claessens +2 位作者 Peter Vrancx Fred Spiessens Geert Deconinck 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第4期423-432,共10页
This paper considers a demand response agent that must find a near-optimal sequence of decisions based on sparse observations of its environment.Extracting a relevant set of features from these observations is a chall... This paper considers a demand response agent that must find a near-optimal sequence of decisions based on sparse observations of its environment.Extracting a relevant set of features from these observations is a challenging task and may require substantial domain knowledge.One way to tackle this problem is to store sequences of past observations and actions in the state vector,making it high dimensional,and apply techniques from deep learning.This paper investigates the capabilities of different deep learning techniques,such as convolutional neural networks and recurrent neural networks,to extract relevant features for finding near-optimal policies for a residential heating system and electric water heater that are hindered by sparse observations.Our simulation results indicate that in this specific scenario,feeding sequences of time-series to an Long Short-Term Memory(LSTM)network,which is a specific type of recurrent neural network,achieved a higher performance than stacking these time-series in the input of a convolutional neural network or deep neural network. 展开更多
关键词 Convolutional networks deep reinforcement learning long short-term memory residential demand response
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部