期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
LoS MIMO Transmission for LEO Satellite Communication Systems 被引量:1
1
作者 Lingxuan Li Tingting Chen +3 位作者 Wenjin Wang Xiaohang Song Li You Xiqi Gao 《China Communications》 SCIE CSCD 2022年第10期180-193,共14页
To provide global service with low latency, the broadband low earth orbits (LEO) satellite constellation based communication systems have become one of the focuses in academic and industry. To allow for wideband acces... To provide global service with low latency, the broadband low earth orbits (LEO) satellite constellation based communication systems have become one of the focuses in academic and industry. To allow for wideband access for user links, the feeder link of LEO satellite is correspondingly required to support high throughput data communications. To this end, we propose to apply line-of-sight (LoS) multiple-input multiple-output (MIMO) transmission for the feeder link to achieve spatial multiplexing by optimizing the antenna arrangement. Unlike the LoS MIMO applications for static scenarios, the movement of LEO satellites make it impractical to adjust the optimal antenna separation for all possible satellite positions. To address this issue, we propose to design the antenna placement to maximize the ergodic channel capacity during the visible region of the ground station. We first derive the closed-form probability distribution of the satellite trajectory in visible region. Based on which the ergodic channel capacity can be then calculated numerically. The antenna placement can be further optimized to maximize the ergodic channel capacity. Numerical results verify the derived probability distribution of the satellite trajectory, and show that the proposed LoS MIMO scheme can significantly increase the ergodic channel capacity compared with the existing SISO one. 展开更多
关键词 LoS MIMO LEO satellite ergodic channel capacity Beyond 5G
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部