期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evaluation of three-dimensional biofilms on antibacterial bonding agents containing novel quaternary ammonium methacrylates 被引量:5
1
作者 Han Zhou Michael D Weir +3 位作者 Joseph M Antonucci Gary E Schumacher Xue-Dong Zhou Hockin H K Xu 《International Journal of Oral Science》 SCIE CAS CSCD 2014年第2期77-86,共10页
Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and incorporate quaternary ammonium methacrylates into adhesives, and investigate the alk... Antibacterial adhesives are promising to inhibit biofilms and secondary caries. The objectives of this study were to synthesize and incorporate quaternary ammonium methacrylates into adhesives, and investigate the alkyl chain length effects on three-dimensional biofilms adherent on adhesives for the first time. Six quaternary ammonium methacrylates with chain lengths of 3, 6, 9, 12, 16 and 18 were synthesized and incorporated into Scotchbond Multi-Purpose. Streptococcus mutans bacteria were cultured on resin to form biofilms. Confocal laser scanning microscopy was used to measure biofilm thickness, live/dead volumes and live-bacteria percentage vs. distance from resin surface. Biofilm thickness was the greatest for Scotchbond control; it decreased with increasing chain length, reaching a minimum at chain length 16. Live-biofilm volume had a similar trend. Dead-biofilm volume increased with increasing chain length. The adhesive with chain length 9 had 37% live bacteria near resin surface, but close to 100% live bacteria in the biofilm top section. For chain length 16, there were nearly 0% live bacteria throughout the three-dimensional biofilm. In conclusion, strong antibacterial activity was achieved by adding quaternary ammonium into adhesive, with biofilm thickness and live-biofilm volume decreasing as chain length was increased from 3 to 16. Antibacterial adhesives typically only inhibited bacteria close to its surface; however, adhesive with chain length 16 had mostly dead bacteria in the entire three-dimensional biofilm. Antibacterial adhesive with chain length 16 is promising to inhibit biofilms at the margins and combat secondary caries. 展开更多
关键词 alkyl chain length antibacterial bondingagent dental caries quaternaryammonium methacrylate Streptococcusmutans three-dimensional biofilm
下载PDF
Calcium phosphate cements for bone engineering and their biological properties 被引量:16
2
作者 Hockin HK Xu Ping Wang +7 位作者 Lin Wang Chongyun Bao Qianming Chen Michael D Weir Laurence C Chow Liang Zhao Xuedong Zhou Mark A Reynolds 《Bone Research》 SCIE CAS CSCD 2017年第4期286-304,共19页
Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports thei... Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre- vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis. 展开更多
关键词 CPC BMSCS Calcium phosphate cements for bone engineering and their biological properties
下载PDF
Advanced smart biomaterials and constructs for hard tissue engineering and regeneration 被引量:6
3
作者 Ke Zhang Suping Wang +10 位作者 Chenchen Zhou Lei Cheng Xianling Gao Xianju Xie Jirun Sun Haohao Wang Michael D.Weir Mark A.Reynolds Ning Zhang Yuxing Bai Hockin H.K.Xu 《Bone Research》 SCIE CAS CSCD 2018年第4期316-330,共15页
Hard tissue repair and regeneration cost hundreds of billions of dollars annually worldwide, and the need has substantially increased as the population has aged. Hard tissues include bone and tooth structures that con... Hard tissue repair and regeneration cost hundreds of billions of dollars annually worldwide, and the need has substantially increased as the population has aged. Hard tissues include bone and tooth structures that contain calcium phosphate minerals.Smart biomaterial-based tissue engineering and regenerative medicine methods have the exciting potential to meet this urgent need. Smart biomaterials and constructs refer to biomaterials and constructs that possess instructive/inductive or triggering/stimulating effects on cells and tissues by engineering the material's responsiveness to internal or external stimuli or have intelligently tailored properties and functions that can promote tissue repair and regeneration. The smart material-based approaches include smart scaffolds and stem cell constructs for bone tissue engineering; smart drug delivery systems to enhance bone regeneration; smart dental resins that respond to pH to protect tooth structures; smart pH-sensitive dental materials to selectively inhibit acid-producing bacteria; smart polymers to modulate biofilm species away from a pathogenic composition and shift towards a healthy composition; and smart materials to suppress biofilms and avoid drug resistance. These smart biomaterials can not only deliver and guide stem cells to improve tissue regeneration and deliver drugs and bioactive agents with spatially and temporarily controlled releases but can also modulate/suppress biofilms and combat infections in wound sites. The new generation of smart biomaterials provides exciting potential and is a promising opportunity to substantially enhance hard tissue engineering and regenerative medicine efficacy. 展开更多
关键词 REGENERATION ENGINEERING MINERALS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部