In this paper, it is proved the ability of quantity reconstruction, amplitudes and coordinates of metallic strip local scattering sources from the backscattering pattern. They are performed as the results of numerical...In this paper, it is proved the ability of quantity reconstruction, amplitudes and coordinates of metallic strip local scattering sources from the backscattering pattern. They are performed as the results of numerical solution for the infinite perfect conducting strip in case of E-polarization of the incident plane electromagnetic wave. In this case it is necessary to fulfill the following conditions. The local sources amplitudes should be the same order, in transverse and longitudinal directions the local sources should be separated into distances more than apparatus resolution, and the object maximum size does not have to be more than approximately 50λ. It was shown the limit and ability of the further development of the offered method.展开更多
The field emission current from a carbon fiber is considered. As a model of emission of an elementary carbon tube, tunnel ionization of an electron from a short-range potential is taken. The exact solution for the wav...The field emission current from a carbon fiber is considered. As a model of emission of an elementary carbon tube, tunnel ionization of an electron from a short-range potential is taken. The exact solution for the wave function in such a model allows obtaining an asymptotic expression for electron current. A computer model of transverse distribution of emission current of a carbon fiber is built on the basis of the Monte Carlo method that allows taking into account the random character of distribution of local emitter sources and the distribution of gains of an electric field in carbon nanotubes.展开更多
文摘In this paper, it is proved the ability of quantity reconstruction, amplitudes and coordinates of metallic strip local scattering sources from the backscattering pattern. They are performed as the results of numerical solution for the infinite perfect conducting strip in case of E-polarization of the incident plane electromagnetic wave. In this case it is necessary to fulfill the following conditions. The local sources amplitudes should be the same order, in transverse and longitudinal directions the local sources should be separated into distances more than apparatus resolution, and the object maximum size does not have to be more than approximately 50λ. It was shown the limit and ability of the further development of the offered method.
文摘The field emission current from a carbon fiber is considered. As a model of emission of an elementary carbon tube, tunnel ionization of an electron from a short-range potential is taken. The exact solution for the wave function in such a model allows obtaining an asymptotic expression for electron current. A computer model of transverse distribution of emission current of a carbon fiber is built on the basis of the Monte Carlo method that allows taking into account the random character of distribution of local emitter sources and the distribution of gains of an electric field in carbon nanotubes.