In the present study,an open source CFD tool,Open FOAM has been extended and applied to investigate roll motion of a 2-D rectangular barge induced by nonlinear regular waves in viscous flow.Comparisons of the present ...In the present study,an open source CFD tool,Open FOAM has been extended and applied to investigate roll motion of a 2-D rectangular barge induced by nonlinear regular waves in viscous flow.Comparisons of the present Open FOAM results with published potential-flow solutions and experimental data have indicated that the newly extended Open FOAM model is very capable of accurate modelling of wave interaction with freely rolling structures.The wave-induced roll motions,hydrodynamic forces on the barge,velocities and vorticity fields in the vicinity of the structure in the presence of waves have been investigated to reveal the real physics involved in the wave induced roll motion of a 2-D floating structure.Parametric analysis has been carried out to examine the effect of structure dimension and body draft on the roll motion.展开更多
This paper aims to provide a better understanding of the interaction between solitary waves and vertical circular cylinders. This is achieved via process based numerical modelling using the parallel particle-in-cell b...This paper aims to provide a better understanding of the interaction between solitary waves and vertical circular cylinders. This is achieved via process based numerical modelling using the parallel particle-in-cell based incompressible flow solver PICIN. The numerical model solves the Navier-Stokes equations for free-surface flows and incorporates a Cartesian cut cell method for fluid-structure interaction. Solitary waves are generated using a piston-type wave paddle. The PICIN model is first validated using a test case that involves solitary wave scattering by a single vertical cylinder. Comparisons between the present results and experimental data show good agreement for the free surface elevations around the cylinder and the horizontal wave force on the cylinder. The model is then employed to investigate solitary wave interaction with a group of eleven vertical cylinders. The wave run-up and wave forces on the cylinders are discussed.展开更多
基金the financial support of the University of Bath and China Scholarship Council(CSC)for her Ph.D.study
文摘In the present study,an open source CFD tool,Open FOAM has been extended and applied to investigate roll motion of a 2-D rectangular barge induced by nonlinear regular waves in viscous flow.Comparisons of the present Open FOAM results with published potential-flow solutions and experimental data have indicated that the newly extended Open FOAM model is very capable of accurate modelling of wave interaction with freely rolling structures.The wave-induced roll motions,hydrodynamic forces on the barge,velocities and vorticity fields in the vicinity of the structure in the presence of waves have been investigated to reveal the real physics involved in the wave induced roll motion of a 2-D floating structure.Parametric analysis has been carried out to examine the effect of structure dimension and body draft on the roll motion.
基金funded by the University of Bath (Graduate school funding, sponsor code: 3451)HR Wallingford (internal research project: DDY0485).
文摘This paper aims to provide a better understanding of the interaction between solitary waves and vertical circular cylinders. This is achieved via process based numerical modelling using the parallel particle-in-cell based incompressible flow solver PICIN. The numerical model solves the Navier-Stokes equations for free-surface flows and incorporates a Cartesian cut cell method for fluid-structure interaction. Solitary waves are generated using a piston-type wave paddle. The PICIN model is first validated using a test case that involves solitary wave scattering by a single vertical cylinder. Comparisons between the present results and experimental data show good agreement for the free surface elevations around the cylinder and the horizontal wave force on the cylinder. The model is then employed to investigate solitary wave interaction with a group of eleven vertical cylinders. The wave run-up and wave forces on the cylinders are discussed.