期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sono-Photo Fenton Treatment of Liquid Waste Containing Ethylenediaminetetraacetic Acid (EDTA)
1
作者 S. Chitra K. Paramasivan P. K. Sinha 《International Journal of Nonferrous Metallurgy》 2013年第2期89-94,共6页
Ethylenediaminetetraacetic acid (EDTA) is a chelating agent that has been used for decontamination purposes in nuclear industry. The presence of EDTA in decontamination wastes can cause complexation of the cations res... Ethylenediaminetetraacetic acid (EDTA) is a chelating agent that has been used for decontamination purposes in nuclear industry. The presence of EDTA in decontamination wastes can cause complexation of the cations resulting into interferences in their removal by various treatment processes such as chemical precipitation, ion exchange etc. Further, it might also impart elevated leachability of cationic contaminants from the conditioned wastes immobilized in cement or other matrices and can negatively influence the quality of the final form of waste. In the present study, kinetics of degradation of EDTA (20,000 mg/l) by employing either Photo-Fenton process using UV (15 W λmax = 253.7 nm) or Sono-Fenton process using ultrasound at 130 KHz or simultaneous Sono-Photo Fenton process has been investigated. EDTA is effectively degraded by the synergistic effect of both Photo Fenton and Sono Fenton process. All the above mentioned processes were found to follow a first order kinetics reaction. From the observed pH changes during the oxidation processes, it can be concluded that there is a loss of chelating ability of EDTA. Formation of amides was con- firmed during the degradation processes. 展开更多
关键词 Advanced Oxidation Process (AOP) EDTA Fenton’s REAGENT Sono-Photofenton
下载PDF
Comparison of Radial Basis Function Neural Network and Response Surface Methodology for Predicting Performance of Biofilter Treating Toluene 被引量:2
2
作者 Sharvari C. Deshmukh J. Senthilnath +5 位作者 Rashmi M. Dixit Sameena N. Malik Ram A. Pandey Atul N. Vaidya Subbaramajois N. Omkar Sandeep N. Mudliar 《Journal of Software Engineering and Applications》 2012年第8期595-603,共9页
Biofiltration is emerging as a promising cost effective technique for the Volatile Organic Compounds (VOCs) removal from industrial waste gases. In the present investigation a comparative modeling study has been carri... Biofiltration is emerging as a promising cost effective technique for the Volatile Organic Compounds (VOCs) removal from industrial waste gases. In the present investigation a comparative modeling study has been carried out using Radial Basis Function Neural Network (RBFN) and Response Surface Methodology (RSM) to predict and optimize the performance of a biofilter system treating toluene (a model VOC). Experimental biofilter system performance data collected over a time period by daily measurement of inlet VOC concentration, retention time, pH, temperature and packing moisture content was used to develop the mathematical model. These independent variables acted as the inputs to the mathematical model developed using RSM and RBFN, while the VOC removal efficiency was the biofilter system performance parameter to be predicted. The data set was divided into two parts: 60% of data was used for training phase and remaining 40% of data was used for the testing phase. The average % error for RSM and RBFN were 7.76% and 3.03%, and R2 value obtained were 0.8826 and 0.9755 respectively. The results indicated the superiority of RBFN in the prediction capability due to its ability to approximate higher degree of nonlinearity between the input and output variables. The optimization of biofilter parameters was also done using RSM to optimize the biofilter performance. RSM being structured in nature enabled the study of interaction effect between the independent variables on biofilter performance. 展开更多
关键词 VOC TOLUENE BIOFILTER Response Surface Methodology RADIAL BASIS Function Neural Network
下载PDF
Arsenic removal from water and soils using pristine and modified biochars 被引量:1
3
作者 Wei Zhang Yoora Cho +7 位作者 Meththika Vithanage Sabry M.Shaheen Jörg Rinklebe Daniel S.Alessi Chia-Hung Hou Yohey Hashimoto Piumi Amasha Withana Yong Sik Ok 《Biochar》 SCIE 2022年第1期255-280,共26页
Arsenic(As)is recognized as a persistent and toxic contaminant in the environment that is harmful to humans.Biochar,a porous carbonaceous material with tunable functionality,has been used widely as an adsorbent for re... Arsenic(As)is recognized as a persistent and toxic contaminant in the environment that is harmful to humans.Biochar,a porous carbonaceous material with tunable functionality,has been used widely as an adsorbent for remediating As-contaminated water and soils.Several types of pristine and modified biochar are available,and significant efforts have been made toward modifying the surface of biochars to increase their adsorption capacity for As.Adsorption capacity is influenced by multiple factors,including biomass pyrolysis temperature,pH,the presence of dissolved organic carbon,surface charge,and the presence of phosphate,silicate,sulfate,and microbial activity.Improved As adsorption in modified biochars is attributed to several mechanisms including surface complexation/precipitation,ion exchange,oxidation,reduction,electrostatic interactions,and surface functional groups that have a relatively higher affinity for As.Modified biochars show promise for As adsorption;however,further research is required to improve the performance of these materials.For example,modified biochars must be eco-friendly,cost-effective,reliable,efficient,and sustainable to ensure their widespread application for immobilizing As in contaminated water and soils.Conducting relevant research to address these issues relies on a thorough understanding of biochar modifications to date.This study presents an in-depth review of pristine and modified biochars,including their production,physicochemical properties,and As adsorption mechanisms.Furthermore,a comprehensive evaluation of biochar applications is provided in As-contaminated environments as a guide for selecting suitable biochars for As removal in the field. 展开更多
关键词 Engineered biochar Removal mechanisms Arsenic pollution Water pollution Soil pollution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部