Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe ...Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe yield of these valuable resources.The Hill method approach was used in this study to determine the safe yield the Neishabour aquifer in Khorasan Razvi province in Iran.The results showed that the safe yield in the Neishabour aquifer is 60%lower than the current pumping amounts during the study period,indicating that further overdrafts could result in the destruction of this aquifer.This highlights the importance of using the Hill method to estimate the permitted exploitation from other aquifers,thus preventing problems caused by over-extraction and maintaining stability of global groundwater levels.展开更多
In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of ...In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h-1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.展开更多
Nowadays, due to increasing population and water shortage and competition for its consumption, especially in the agriculture, which is the largest consumer of water, proper and suitable utilization and optimal use of ...Nowadays, due to increasing population and water shortage and competition for its consumption, especially in the agriculture, which is the largest consumer of water, proper and suitable utilization and optimal use of water resources is essential. One of the important parameters in agriculture field is water distribution network. In this research, differential evolution algorithm (DE) was used to optimize Ismail Abad water supply network. This network is pressurized network and includes 19 pipes and 18 nodes. Optimization of the network has been evaluated by developing an optimization model based on DE algorithm in MATLAB and the dynamic connection with EPANET software for network hydraulic calculation. The developing model was run for the scale factor (F), the crossover constant (Cr), initial population (N) and the number of generations (G) and was identified best adeptness for DE algorithm is 0.6, 0.5, 100 and 200 for F and Cr, N and G, respectively. The optimal solution was compared with the classical empirical method and results showed that implementation cost of the network by DE algorithm was 10.66% lower than the classical empirical method.展开更多
Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed sa...Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed saline lakes among the mega dunes.Based on the up to date geological surveys and observations,this study analyzed the groundwater contributions in water-salt balances of the lakes in the desert.We found different types of springs,including the sublacustrine springs that indicate an upward flow of groundwater under the lakebed.A simplified water balance model was developed to analyze the seasonal variations of water level in the Sumu Barun Jaran Lake,which revealed an approximately steady groundwater discharge in the lake and explained why the amplitude of seasonal changes in lake level is less than 0.5 m.In addition,a salt balance model was developed to evaluate the salt accumulations in the groundwater-fed lakes.The relative salt accumulation time is 800–7,000 years in typical saline lakes,which were estimated from the concentration of Cl-,indicating a long history evolution for the lakes in the BJD.Further researches are recommended to provide comprehensive investigations on the interactions between the lakes and groundwater in the BJD.展开更多
At present,due to shortage of water resources,especially in arid and semiarid areas of the world such as Iran,exploitation of groundwater resources with suitable quality for drinking is of high importance.In this rega...At present,due to shortage of water resources,especially in arid and semiarid areas of the world such as Iran,exploitation of groundwater resources with suitable quality for drinking is of high importance.In this regard,contamination of groundwater resources to heavy metals,especially arsenic,is one of the most important hazards that threaten human health.The present study aims to develop an approach for presenting the groundwater quality of Sirjan city in Kerman Province,based on modern tools of spatial zoning in the GIS environment and a fuzzy approach of evaluating drinking water in accordance with the standards of world health organization(WHO).For this purpose,qualitative data related to 22 exploitation wells recorded during 2002 to 2017 were used.In addition,fuzzy aggregate maps were prepared in two scenarios by neglecting and considering arsenic presence in groundwater resources.The results showed a decrease in groundwater quality over time.More specifically,neglecting the presence of arsenic,in 2002,all drinking wells in the area were located in an excellent zone,while in 2017 a number of operation wells were located in the good and medium zone.Also,the final map,considering the presence of arsenic as a limiting factor of drinking water,indicated that parts of the southern regions of the plain would be the best place to dig wells for drinking water.Therefore,the use of new methods can contribute significantly to the usage of groundwater aquifers and provide a good view of the aquifer water quality.展开更多
In this study we estimate agricultural water footprint and its components from consumption perspective in arid and semi-arid region like Iran. This study is based on blue water consumption in irrigated land. Iran has ...In this study we estimate agricultural water footprint and its components from consumption perspective in arid and semi-arid region like Iran. This study is based on blue water consumption in irrigated land. Iran has imported net virtual water about 11.64 billion cubic meters (bcm) as international crop trade in 2005-2006. Therefore, Iran has depended on virtual water imports. By conserving about 60% irrigation efficiency, the total water requirement to produce imported crops in Iran is nearly 20.78 billion cubic meters. It is nearly 9 percent of renewable water resources and 12.65% agricultural appropriated water which has added to internal water resources. Agricultural virtual water budget is about 112.78 Gm3/yr. Agricultural water footprint is 110.2 Gm3/yr. About 12.83% of agricultural water footprint of Iran is related to external water resources on the country boundaries. It means external water footprint. Water dependency, water self-sufficiency and water scarcity indexes in agricultural sector of Iran, are estimated 10.1%, 89.9% and 70.8%, respectively.展开更多
Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ...Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively.展开更多
For many years planning and management of water resources involved modeling and simulation of temporally sequenced and stochastic hydrologic events. Rainfall process is one of such hydrologic events which calls for ti...For many years planning and management of water resources involved modeling and simulation of temporally sequenced and stochastic hydrologic events. Rainfall process is one of such hydrologic events which calls for time series analysis to better understand interesting features contained in it. Many statistics-based methods are available to simulate and predict such a kind of time series. Autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) models are among those methods. In this study a search was conducted to identify and examine a capable stochastic model for annual rainfall series (over the period 1954-2015) of Debre Markos town, Ethiopia. For the historical series, normality and stationarity tests were conducted to check if the time series was from a normally distributed and stationary process. Shapiro-Wilk (SW), Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) tests were among the normality tests conducted whereas, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests were among the stationarity tests. Based on the test results, logarithmic transformation and first order differencing were performed to bring the original series to a normal and stationary series. Results of model fitting showed that three models namely, AR (2), MA (1) and ARMA (2,1) were capable in describing the annual rainfall series. A diagnostic check was performed on model residuals and ARMA (2,1) was found to be the best model among the candidates. Furthermore, three information criteria: Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICc) and Bayesian Information Criterion (BIC) were used to select the best model. In this regard, too, the least information discrepancy between the underlying process and the fitted model was obtained from ARMA (2,1) model. Hence, this model was considered as a better representative of the annual rainfall values and was used to predict five years ahead values. The mean absolute percentage error (MAPE) of the prediction was found to be less than 10%. Thus, ARMA (2,1) model could be used for forecasting and simulation of annual rainfall for planning, management and design of water resources systems in Debre Markos town.展开更多
More accurate estimation of crop evapotranspiration(ET_c)in a regional scale has always been one of the most important challenges.Temporal and spatial monitoring of ET_(c )using satellite images can help to enhance ac...More accurate estimation of crop evapotranspiration(ET_c)in a regional scale has always been one of the most important challenges.Temporal and spatial monitoring of ET_(c )using satellite images can help to enhance accuracy of estimations.In this study,the(ET_c)_(rice) maps were produced by using statistical/experimental methods based on crop coefficient(K_c)maps derived from vegetation index(Ⅵ).K_c was estimated using four methods,including linear relationship between K_c and Ⅵ(K_c-Ⅵ),calibrated model of K_c-Ⅵ,linear relationship between K_(cb)(the basal crop coefficient)and Ⅵ(K_(cb)-Ⅵ),and calibrated model of K_(cb)-Ⅵ.The results showed that calibrated model of K_c-Ⅵ had a better performance compared to the other methods,with normalized root mean square errors(NRMSE),mean absolute error and root mean square error being 5.7%,0.05 mm/d and 0.06mm/d,respectively.(ET_c)_(rice) maps were produced by using calibrated model of K_c-Ⅵ and reference evapotranspiration(ET_0)from FAO Penman-Monteith method.The NRMSE was 21.3%for using FAO Penman-Monteith method.Therefore,calibrated K_c-Ⅵ model in combining with ET_0 based on the Landsat 7 ETM+images could be provided a good estimation of(ET_c)_(rice) in regional scale,and can be applied to estimate water requirement due to the free and facilitate access.展开更多
Archimedes screw turbines have been developed as they work with a low head with high efficiency, where flow energy can be exploited in small rivers, streams, regulators and others. The power can be produced using Arch...Archimedes screw turbines have been developed as they work with a low head with high efficiency, where flow energy can be exploited in small rivers, streams, regulators and others. The power can be produced using Archimedes turbines and depends on some parameters including the number of blades, flow, and angle of the shaft inclination and the length of the pitch. A physical and numerical model ha<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> been developed to determine the performance of the Archimedes turbine on the Ramadi Dam in Iraq. The physical model was made of stainless steel with the following parameters (length 1000</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm, pitch 70</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm, diameter ratio 0.536, inclination angles 30</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">, 35</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">, 40</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">, 45</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">). Work was carried out on different flow rates and inclination angles. The experimental results showed that the highest efficiency was 81.4% at 35</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;"> inclination angle and a flow rate of 1.12 l/s</span><span style="font-family:Verdana;">;</span><span style="font-family:Verdana;"> the maximum power of 9.03 watts was at a 45</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;"> inclination angle and a flow rate of 2.065 l/s and 72% efficiency. Also, the impact of the pitch and the number of blades were studied</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">The results show that torque is increase with an increase in the pitch length, and torque is decreased with increase in several blades. The numerical results showed that the using of two blades led to a greater power produced. The comparison of the numerical and experimental results showed a good agreement, also the comparison with the published data showed a good agreement. As a final result the Archimedes screw has many positive points making it a good potential candidate. The results that emerged show the possibility of using this type of turbine in the Euphrates River in Anbar Governorate—Iraq, as the province is characterized by the presence of many regulators on the river in which turbines can be employed.</span>展开更多
A proper assessment of the rate of unsustainable consumption of biomass fuel is important to determine the extent of the consequent environmental effects. In this paper, an evaluation was made of the rate of fuelwood ...A proper assessment of the rate of unsustainable consumption of biomass fuel is important to determine the extent of the consequent environmental effects. In this paper, an evaluation was made of the rate of fuelwood (firewood and charcoal) consumption in Maiduguri metropolis, the capital of Borno state in Nigeria. Firewood and charcoal are the main solid biomass fuels consumed in Maiduguri city, in addition to rarely used animal dung, thatch, leaves, etc. These fuels are usually used in households, markets and industries for cooking, roasting and bakery activities. To quantify the rate of consumption of these fuels in Maiduguri (and their eventual negative effects), data were collected on the rate of supply of the biomass along highways leading to the city. The result shows a total consumption rate of 366 t/day of solid biomass fuel, with firewood accounting for 288 t/day and charcoal makes up the remaining 78 t/day. This fuelwood consumption rate is around 0.15% of the national figure. The resulting emissions of CO2, CH4, N2O, SO2, NOx, NMVOC, CO, NH3, PM10 and PM2.5 in kg/day are 433,488, 2160, 46, 83, 394, 2796, 34,699, 19.01, 5031 and 4884 respectively. Emissions of greenhouse gases stood at 497 t COe/day or 181,314 t CO2/year. A strategic shift to cleaner stoves and low carbon fuels is feasible and will enhance sustainable energy use.展开更多
A field experiment was conducted for intercropped winter wheat (Triticum aestivum) in 2002/2003 to evaluate the effects of limited supplemental irrigation on photosynthetic characteristics of intercropped winter whe...A field experiment was conducted for intercropped winter wheat (Triticum aestivum) in 2002/2003 to evaluate the effects of limited supplemental irrigation on photosynthetic characteristics of intercropped winter wheat in semiarid environment. The result indicated that significances occurred in grain yield between the intercropped wheat treatments and sole wheat control (CKW), and in yield between the irrigated intercropped wheat plots (WC2W, WC3W, WC5W) and not irrigated (WC1W) except for WC4W plots with nearly the same yield as WC1W. In comparison with CKW, 11.8%, 18.5%, 23.6%, 11.5%, and 30.7% of yield increase in the intercropped wheat plots were obtained in WCIW, WC2W, WC3W, WC4W, and WC5W respectively. Compared to the intercropped wheat plots without irrigation, yields in WC2W, WC3W, and WC5W were improved by 5.9%, 10.5%, and 16.9%, respectively. The dynamics of CGR and NAR in both intercropped (WC1W-WC5W) and solely cropped wheat (CKW) showed a type of "single peak" curves, with both the maximum CGR and NAR occurred during jointing to heading (14/4-6/5) of wheat. In addition, soil water potential (SWP) fluctuated as a function of the precipitation and limited supplemental irrigation.展开更多
Water stress is a major factor that limits agricultural crop production. Silicon(Si) is generally considered as a beneficial element for the growth of higher plants, especially for those grown under stressful environm...Water stress is a major factor that limits agricultural crop production. Silicon(Si) is generally considered as a beneficial element for the growth of higher plants, especially for those grown under stressful environment. This study was conducted to examine the effects of Si on growth and development of strawberry(Fragaria × ananassa ‘Camarosa') under water stress conditions. A factorial experiment, in a completely randomized design, was used to investigate the effects of three irrigation levels and four Si treatments consisting of 0, 5, 10, and 15 mmol·L^(-1) potassium silicate(K_2 SiO_3). The results showed that an increase in the levels of water stress caused a decrease in most of the quantitative characteristics such as specific leaf area, chlorophyll fluorescence, net photosynthesis rate, and stomata conductance; addition of Si significantly increased most of the mentioned factors; water stress increased electrolyte leakage, proline, and water use efficiency(WUE); Si treatment significantly decreased transpiration rate and improved chlorophyll content and WUE. Water stress stimulated mineral nutrient absorption whereas Si application decreased it under water stress. In conclusion, it was found that in most of the investigated factors, 10 mmol·L^(-1) potassium silicate had the best effect on growth and development of strawberry. Besides, Si application had beneficial effects on strawberry plants and the addition of it could alleviate water stress.展开更多
Eggplant(Solanum melongena L.)is a plant native to tropical regions of Southeast Asia.The water crisis and drought on the one hand and eggplant greenhouse crop development as one of the most popular fruit vegetables f...Eggplant(Solanum melongena L.)is a plant native to tropical regions of Southeast Asia.The water crisis and drought on the one hand and eggplant greenhouse crop development as one of the most popular fruit vegetables for people on the other hand,led to the need for more research on the use of saline water and water stress to optimize salinity level and their impact on eggplant evapotranspiration and encounter better yield and crop quality.The objective of the present study was to investigate the interactions of water salinity and hydroponic growth medium on qualitative and quantitative properties of eggplant and its water-use efficiency.The study used the factorial experiment based on completely randomized design with three replications of four levels of water salinity(electrical conductivity of 0.8(control),2.5,5,and 7 dS m^(-1))and three growth media(cocopeat,perlite,and a 50–50 mixture of the two by volume).Total yield,yield components,evapotranspiration,and water-use efficiency were determined during two growing periods,one each in 2012 and 2013.All of these indices decreased significantly as water salinity increased.Water with of 0.8 dS m^(-1) produced an average eggplant yield of 2510 g per plant in 2012 and 2600 g in 2013.The highest yield was observed in cocopeat.Water with 7 dS m^(-1) reduced yield to 906 g per plant in 2012 and to 960 g in 2013.Lowest yield was observed in perlite.The highest evapotranspiration values occurred in cocopeat at the lowest salinity in both years.Cocopeat and the cocopeat–perlite mixture were equally good substrates.The mixture significantly improved the quantitative and qualitative properties of eggplant yield.展开更多
Rainfall forecasting can play a significant role in the planning and management of water resource systems.This study employs a Markov chain model to examine the patterns,distributions and forecast of annual maximum ra...Rainfall forecasting can play a significant role in the planning and management of water resource systems.This study employs a Markov chain model to examine the patterns,distributions and forecast of annual maximum rainfall(AMR)data collected at three selected stations in the Kurdistan Region of Iraq using 32 years of 1990 to 2021 rainfall data.A stochastic process is used to formulate three states(i.e.,decrease-"d";stability-"s";and increase-"i")in a given year for estimating quantitatively the probability of making a transition to any other one of the three states in the following year(s)and in the long run.In addition,the Markov model is also used to forecast the AMR data for the upcoming five years(i.e.,2022-2026).The results indicate that in the upcoming 5 years,the probability of the annual maximum rainfall becoming decreased is 44%,that becoming stable is 16%,and that becoming increased is 40%.Furthermore,it is shown that for the AMR data series,the probabilities will drop slowly from 0.433 to 0.409 in about 11 years,as indi-cated by the average data of the three stations.This study reveals that the Markov model can be used as an appropri-ate tool to forecast future rainfalls in such semi-arid areas as the Kurdistan Region of Iraq.展开更多
The Qinghai-Tibet Plateau is a climate-sensitive region.The characteristics of drought and flood events in this region are significantly different as compared to other areas in the country,which could potentially indu...The Qinghai-Tibet Plateau is a climate-sensitive region.The characteristics of drought and flood events in this region are significantly different as compared to other areas in the country,which could potentially induce a series of water security,ecological and environmental problems.It is urgent that innovative theories and methods for estimation of drought and flood disasters as well as their adaptive regulations are required.Based on extensive literature review,this paper identifies new situations of the evolution of drought and flood events on the Qinghai-Tibet Plateau,and analyzes the research progress in terms of monitoring and simulation,forecasting and early warning,risk prevention and emergency response.The study found that there were problems such as insufficient integration of multi-source data,low accuracy of forecasting and early warning,unclear driving mechanisms of drought and flood disaster chains,and lack of targeted risk prevention and regulation measures.On this basis,future research priorities are proposed,and the possible research and development paths are elaborated,including the evolution law of drought and flood on the Qinghai-Tibet Plateau,the coincidence characteristics of drought and flood from the perspective of a water resources system,prediction and early warning of drought and flood coupled with numerical simulation and knowledge mining,identification of risk blocking points of drought and flood disaster chain and the adaptive regulations.Hopefully,the paper will provide technical support for preventing flood and drought disasters,water resources protection,ecological restoration and climate change adaptation on the Qinghai-Tibet Plateau.展开更多
Soil temperature is a major effective factor on the soil and plant biological properties.Irrigation can affect soil temperature and thereby induces a temperature effect on plant growth,which may result in an economic ...Soil temperature is a major effective factor on the soil and plant biological properties.Irrigation can affect soil temperature and thereby induces a temperature effect on plant growth,which may result in an economic increase due to higher yield and plant nutrition.A ?eld experiment was carried out to investigate the effects of three irrigation strategies including full irrigation(FI),partial root-zone drying(PRD) and de?cit irrigation(DI) on soil temperature and the consequent results on the grain yield and N uptake of maize(Zea May L.).Soil temperature was measured by time domain re?ectometry(TDR) sensors during the 2010 growing season.Irrigation treatments were applied from 55 to 107 d after planting.The PRD treatment caused soil temperature to be in a favorable domain for a longer period(for over 60% of the measuring dates) as a consequent result of water movement to deeper soil layers compared with the other treatments;the PRD treatment also reduced soil temperature at deeper soil depths to below the maximum favorable soil temperature for maize root growth,which resulted in deeper root penetration due to both water availability and favorable soil temperature.Compared to the FI treatment,the PRD treatment increased root water uptake by 50% and caused no signi?cant reduction in total N uptake,while this was not observed in the DI treatment partially due to the negative temperature effect of DI on plant growth,which consequently affected the water and nutrient uptake.A longer vegetation period in the PRD treatment was observed due to higher leaf N concentrations and no signi?cant reduction in maize grain yield occurred in the PRD treatment,compared with those in the FI treatment.Based on the results,having 15.2% water saving during the whole growing season,the PRD irrigation would positively affect soil temperature and the water and nutrient uptake as a consequent,which thereby would prevent signi?cant reduction in maize grain yield.展开更多
The general computational approach of Stochastic Gradient Boosting (SGB) is seen as one of the most powerful methods in predictive data mining. Its applications include regression analysis, classification problems w...The general computational approach of Stochastic Gradient Boosting (SGB) is seen as one of the most powerful methods in predictive data mining. Its applications include regression analysis, classification problems with/without continuous categorical predictors. The present theoretical and experimental study aims to model the free hydraulic jump created through rectangular Channels Downstream (DS) symmetric and asymmetric expansions using SGB. A theoretical model for prediction of the depth ratio of jumps is developed using the governing flow equations. At the same time, statistical models using linear regression are also developed. Three different parameters of the hydraulic jump are investigated experimentally using modified angled-guide walls. The results from the modified SGB model indicate a significant improvement on the original models. The present study shows the possibility of applying the modified SGB method in engineering designs and other practical applications.展开更多
Experimental results were compared with the computed results obtained from the nine most well-known methods for computation of discharge in a compound channel. The results demonstrate a high accuracy of the divided ch...Experimental results were compared with the computed results obtained from the nine most well-known methods for computation of discharge in a compound channel. The results demonstrate a high accuracy of the divided channel method with the horizontal division lines, while the length of division line is included within the calculation of the wetted perimeter. In addition, as relative depth increases, the results of the all methods converge to each other and also in case of steeper slopes in lower relative depths, more agreements between different calculated methods and experimental results were observed. Furthermore, the results show the effects of the maximum momentum transfer on the horizontal interface between the main channel and flood plains, while further angular distance from the horizontal interface toward the vertical interface between main channel and flood plains causes gradual decrease of momentum transfer effects.展开更多
文摘Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe yield of these valuable resources.The Hill method approach was used in this study to determine the safe yield the Neishabour aquifer in Khorasan Razvi province in Iran.The results showed that the safe yield in the Neishabour aquifer is 60%lower than the current pumping amounts during the study period,indicating that further overdrafts could result in the destruction of this aquifer.This highlights the importance of using the Hill method to estimate the permitted exploitation from other aquifers,thus preventing problems caused by over-extraction and maintaining stability of global groundwater levels.
文摘In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h-1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.
文摘Nowadays, due to increasing population and water shortage and competition for its consumption, especially in the agriculture, which is the largest consumer of water, proper and suitable utilization and optimal use of water resources is essential. One of the important parameters in agriculture field is water distribution network. In this research, differential evolution algorithm (DE) was used to optimize Ismail Abad water supply network. This network is pressurized network and includes 19 pipes and 18 nodes. Optimization of the network has been evaluated by developing an optimization model based on DE algorithm in MATLAB and the dynamic connection with EPANET software for network hydraulic calculation. The developing model was run for the scale factor (F), the crossover constant (Cr), initial population (N) and the number of generations (G) and was identified best adeptness for DE algorithm is 0.6, 0.5, 100 and 200 for F and Cr, N and G, respectively. The optimal solution was compared with the classical empirical method and results showed that implementation cost of the network by DE algorithm was 10.66% lower than the classical empirical method.
基金supported by the China Foundation for the Author of National Excellent Doctoral Dissertation (201457)the National Natural Science Foundation of China (91125024)
文摘Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed saline lakes among the mega dunes.Based on the up to date geological surveys and observations,this study analyzed the groundwater contributions in water-salt balances of the lakes in the desert.We found different types of springs,including the sublacustrine springs that indicate an upward flow of groundwater under the lakebed.A simplified water balance model was developed to analyze the seasonal variations of water level in the Sumu Barun Jaran Lake,which revealed an approximately steady groundwater discharge in the lake and explained why the amplitude of seasonal changes in lake level is less than 0.5 m.In addition,a salt balance model was developed to evaluate the salt accumulations in the groundwater-fed lakes.The relative salt accumulation time is 800–7,000 years in typical saline lakes,which were estimated from the concentration of Cl-,indicating a long history evolution for the lakes in the BJD.Further researches are recommended to provide comprehensive investigations on the interactions between the lakes and groundwater in the BJD.
文摘At present,due to shortage of water resources,especially in arid and semiarid areas of the world such as Iran,exploitation of groundwater resources with suitable quality for drinking is of high importance.In this regard,contamination of groundwater resources to heavy metals,especially arsenic,is one of the most important hazards that threaten human health.The present study aims to develop an approach for presenting the groundwater quality of Sirjan city in Kerman Province,based on modern tools of spatial zoning in the GIS environment and a fuzzy approach of evaluating drinking water in accordance with the standards of world health organization(WHO).For this purpose,qualitative data related to 22 exploitation wells recorded during 2002 to 2017 were used.In addition,fuzzy aggregate maps were prepared in two scenarios by neglecting and considering arsenic presence in groundwater resources.The results showed a decrease in groundwater quality over time.More specifically,neglecting the presence of arsenic,in 2002,all drinking wells in the area were located in an excellent zone,while in 2017 a number of operation wells were located in the good and medium zone.Also,the final map,considering the presence of arsenic as a limiting factor of drinking water,indicated that parts of the southern regions of the plain would be the best place to dig wells for drinking water.Therefore,the use of new methods can contribute significantly to the usage of groundwater aquifers and provide a good view of the aquifer water quality.
文摘In this study we estimate agricultural water footprint and its components from consumption perspective in arid and semi-arid region like Iran. This study is based on blue water consumption in irrigated land. Iran has imported net virtual water about 11.64 billion cubic meters (bcm) as international crop trade in 2005-2006. Therefore, Iran has depended on virtual water imports. By conserving about 60% irrigation efficiency, the total water requirement to produce imported crops in Iran is nearly 20.78 billion cubic meters. It is nearly 9 percent of renewable water resources and 12.65% agricultural appropriated water which has added to internal water resources. Agricultural virtual water budget is about 112.78 Gm3/yr. Agricultural water footprint is 110.2 Gm3/yr. About 12.83% of agricultural water footprint of Iran is related to external water resources on the country boundaries. It means external water footprint. Water dependency, water self-sufficiency and water scarcity indexes in agricultural sector of Iran, are estimated 10.1%, 89.9% and 70.8%, respectively.
文摘Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively.
文摘For many years planning and management of water resources involved modeling and simulation of temporally sequenced and stochastic hydrologic events. Rainfall process is one of such hydrologic events which calls for time series analysis to better understand interesting features contained in it. Many statistics-based methods are available to simulate and predict such a kind of time series. Autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) models are among those methods. In this study a search was conducted to identify and examine a capable stochastic model for annual rainfall series (over the period 1954-2015) of Debre Markos town, Ethiopia. For the historical series, normality and stationarity tests were conducted to check if the time series was from a normally distributed and stationary process. Shapiro-Wilk (SW), Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) tests were among the normality tests conducted whereas, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests were among the stationarity tests. Based on the test results, logarithmic transformation and first order differencing were performed to bring the original series to a normal and stationary series. Results of model fitting showed that three models namely, AR (2), MA (1) and ARMA (2,1) were capable in describing the annual rainfall series. A diagnostic check was performed on model residuals and ARMA (2,1) was found to be the best model among the candidates. Furthermore, three information criteria: Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICc) and Bayesian Information Criterion (BIC) were used to select the best model. In this regard, too, the least information discrepancy between the underlying process and the fitted model was obtained from ARMA (2,1) model. Hence, this model was considered as a better representative of the annual rainfall values and was used to predict five years ahead values. The mean absolute percentage error (MAPE) of the prediction was found to be less than 10%. Thus, ARMA (2,1) model could be used for forecasting and simulation of annual rainfall for planning, management and design of water resources systems in Debre Markos town.
文摘More accurate estimation of crop evapotranspiration(ET_c)in a regional scale has always been one of the most important challenges.Temporal and spatial monitoring of ET_(c )using satellite images can help to enhance accuracy of estimations.In this study,the(ET_c)_(rice) maps were produced by using statistical/experimental methods based on crop coefficient(K_c)maps derived from vegetation index(Ⅵ).K_c was estimated using four methods,including linear relationship between K_c and Ⅵ(K_c-Ⅵ),calibrated model of K_c-Ⅵ,linear relationship between K_(cb)(the basal crop coefficient)and Ⅵ(K_(cb)-Ⅵ),and calibrated model of K_(cb)-Ⅵ.The results showed that calibrated model of K_c-Ⅵ had a better performance compared to the other methods,with normalized root mean square errors(NRMSE),mean absolute error and root mean square error being 5.7%,0.05 mm/d and 0.06mm/d,respectively.(ET_c)_(rice) maps were produced by using calibrated model of K_c-Ⅵ and reference evapotranspiration(ET_0)from FAO Penman-Monteith method.The NRMSE was 21.3%for using FAO Penman-Monteith method.Therefore,calibrated K_c-Ⅵ model in combining with ET_0 based on the Landsat 7 ETM+images could be provided a good estimation of(ET_c)_(rice) in regional scale,and can be applied to estimate water requirement due to the free and facilitate access.
文摘Archimedes screw turbines have been developed as they work with a low head with high efficiency, where flow energy can be exploited in small rivers, streams, regulators and others. The power can be produced using Archimedes turbines and depends on some parameters including the number of blades, flow, and angle of the shaft inclination and the length of the pitch. A physical and numerical model ha<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> been developed to determine the performance of the Archimedes turbine on the Ramadi Dam in Iraq. The physical model was made of stainless steel with the following parameters (length 1000</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm, pitch 70</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm, diameter ratio 0.536, inclination angles 30</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">, 35</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">, 40</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">, 45</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">). Work was carried out on different flow rates and inclination angles. The experimental results showed that the highest efficiency was 81.4% at 35</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;"> inclination angle and a flow rate of 1.12 l/s</span><span style="font-family:Verdana;">;</span><span style="font-family:Verdana;"> the maximum power of 9.03 watts was at a 45</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;"> inclination angle and a flow rate of 2.065 l/s and 72% efficiency. Also, the impact of the pitch and the number of blades were studied</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">The results show that torque is increase with an increase in the pitch length, and torque is decreased with increase in several blades. The numerical results showed that the using of two blades led to a greater power produced. The comparison of the numerical and experimental results showed a good agreement, also the comparison with the published data showed a good agreement. As a final result the Archimedes screw has many positive points making it a good potential candidate. The results that emerged show the possibility of using this type of turbine in the Euphrates River in Anbar Governorate—Iraq, as the province is characterized by the presence of many regulators on the river in which turbines can be employed.</span>
文摘A proper assessment of the rate of unsustainable consumption of biomass fuel is important to determine the extent of the consequent environmental effects. In this paper, an evaluation was made of the rate of fuelwood (firewood and charcoal) consumption in Maiduguri metropolis, the capital of Borno state in Nigeria. Firewood and charcoal are the main solid biomass fuels consumed in Maiduguri city, in addition to rarely used animal dung, thatch, leaves, etc. These fuels are usually used in households, markets and industries for cooking, roasting and bakery activities. To quantify the rate of consumption of these fuels in Maiduguri (and their eventual negative effects), data were collected on the rate of supply of the biomass along highways leading to the city. The result shows a total consumption rate of 366 t/day of solid biomass fuel, with firewood accounting for 288 t/day and charcoal makes up the remaining 78 t/day. This fuelwood consumption rate is around 0.15% of the national figure. The resulting emissions of CO2, CH4, N2O, SO2, NOx, NMVOC, CO, NH3, PM10 and PM2.5 in kg/day are 433,488, 2160, 46, 83, 394, 2796, 34,699, 19.01, 5031 and 4884 respectively. Emissions of greenhouse gases stood at 497 t COe/day or 181,314 t CO2/year. A strategic shift to cleaner stoves and low carbon fuels is feasible and will enhance sustainable energy use.
文摘A field experiment was conducted for intercropped winter wheat (Triticum aestivum) in 2002/2003 to evaluate the effects of limited supplemental irrigation on photosynthetic characteristics of intercropped winter wheat in semiarid environment. The result indicated that significances occurred in grain yield between the intercropped wheat treatments and sole wheat control (CKW), and in yield between the irrigated intercropped wheat plots (WC2W, WC3W, WC5W) and not irrigated (WC1W) except for WC4W plots with nearly the same yield as WC1W. In comparison with CKW, 11.8%, 18.5%, 23.6%, 11.5%, and 30.7% of yield increase in the intercropped wheat plots were obtained in WCIW, WC2W, WC3W, WC4W, and WC5W respectively. Compared to the intercropped wheat plots without irrigation, yields in WC2W, WC3W, and WC5W were improved by 5.9%, 10.5%, and 16.9%, respectively. The dynamics of CGR and NAR in both intercropped (WC1W-WC5W) and solely cropped wheat (CKW) showed a type of "single peak" curves, with both the maximum CGR and NAR occurred during jointing to heading (14/4-6/5) of wheat. In addition, soil water potential (SWP) fluctuated as a function of the precipitation and limited supplemental irrigation.
文摘Water stress is a major factor that limits agricultural crop production. Silicon(Si) is generally considered as a beneficial element for the growth of higher plants, especially for those grown under stressful environment. This study was conducted to examine the effects of Si on growth and development of strawberry(Fragaria × ananassa ‘Camarosa') under water stress conditions. A factorial experiment, in a completely randomized design, was used to investigate the effects of three irrigation levels and four Si treatments consisting of 0, 5, 10, and 15 mmol·L^(-1) potassium silicate(K_2 SiO_3). The results showed that an increase in the levels of water stress caused a decrease in most of the quantitative characteristics such as specific leaf area, chlorophyll fluorescence, net photosynthesis rate, and stomata conductance; addition of Si significantly increased most of the mentioned factors; water stress increased electrolyte leakage, proline, and water use efficiency(WUE); Si treatment significantly decreased transpiration rate and improved chlorophyll content and WUE. Water stress stimulated mineral nutrient absorption whereas Si application decreased it under water stress. In conclusion, it was found that in most of the investigated factors, 10 mmol·L^(-1) potassium silicate had the best effect on growth and development of strawberry. Besides, Si application had beneficial effects on strawberry plants and the addition of it could alleviate water stress.
文摘Eggplant(Solanum melongena L.)is a plant native to tropical regions of Southeast Asia.The water crisis and drought on the one hand and eggplant greenhouse crop development as one of the most popular fruit vegetables for people on the other hand,led to the need for more research on the use of saline water and water stress to optimize salinity level and their impact on eggplant evapotranspiration and encounter better yield and crop quality.The objective of the present study was to investigate the interactions of water salinity and hydroponic growth medium on qualitative and quantitative properties of eggplant and its water-use efficiency.The study used the factorial experiment based on completely randomized design with three replications of four levels of water salinity(electrical conductivity of 0.8(control),2.5,5,and 7 dS m^(-1))and three growth media(cocopeat,perlite,and a 50–50 mixture of the two by volume).Total yield,yield components,evapotranspiration,and water-use efficiency were determined during two growing periods,one each in 2012 and 2013.All of these indices decreased significantly as water salinity increased.Water with of 0.8 dS m^(-1) produced an average eggplant yield of 2510 g per plant in 2012 and 2600 g in 2013.The highest yield was observed in cocopeat.Water with 7 dS m^(-1) reduced yield to 906 g per plant in 2012 and to 960 g in 2013.Lowest yield was observed in perlite.The highest evapotranspiration values occurred in cocopeat at the lowest salinity in both years.Cocopeat and the cocopeat–perlite mixture were equally good substrates.The mixture significantly improved the quantitative and qualitative properties of eggplant yield.
文摘Rainfall forecasting can play a significant role in the planning and management of water resource systems.This study employs a Markov chain model to examine the patterns,distributions and forecast of annual maximum rainfall(AMR)data collected at three selected stations in the Kurdistan Region of Iraq using 32 years of 1990 to 2021 rainfall data.A stochastic process is used to formulate three states(i.e.,decrease-"d";stability-"s";and increase-"i")in a given year for estimating quantitatively the probability of making a transition to any other one of the three states in the following year(s)and in the long run.In addition,the Markov model is also used to forecast the AMR data for the upcoming five years(i.e.,2022-2026).The results indicate that in the upcoming 5 years,the probability of the annual maximum rainfall becoming decreased is 44%,that becoming stable is 16%,and that becoming increased is 40%.Furthermore,it is shown that for the AMR data series,the probabilities will drop slowly from 0.433 to 0.409 in about 11 years,as indi-cated by the average data of the three stations.This study reveals that the Markov model can be used as an appropri-ate tool to forecast future rainfalls in such semi-arid areas as the Kurdistan Region of Iraq.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3201705)。
文摘The Qinghai-Tibet Plateau is a climate-sensitive region.The characteristics of drought and flood events in this region are significantly different as compared to other areas in the country,which could potentially induce a series of water security,ecological and environmental problems.It is urgent that innovative theories and methods for estimation of drought and flood disasters as well as their adaptive regulations are required.Based on extensive literature review,this paper identifies new situations of the evolution of drought and flood events on the Qinghai-Tibet Plateau,and analyzes the research progress in terms of monitoring and simulation,forecasting and early warning,risk prevention and emergency response.The study found that there were problems such as insufficient integration of multi-source data,low accuracy of forecasting and early warning,unclear driving mechanisms of drought and flood disaster chains,and lack of targeted risk prevention and regulation measures.On this basis,future research priorities are proposed,and the possible research and development paths are elaborated,including the evolution law of drought and flood on the Qinghai-Tibet Plateau,the coincidence characteristics of drought and flood from the perspective of a water resources system,prediction and early warning of drought and flood coupled with numerical simulation and knowledge mining,identification of risk blocking points of drought and flood disaster chain and the adaptive regulations.Hopefully,the paper will provide technical support for preventing flood and drought disasters,water resources protection,ecological restoration and climate change adaptation on the Qinghai-Tibet Plateau.
基金Sari Agricultural Sciences and Natural Resources University(SANRU),Iran for giving the site for field investigation and to appreciate University of Zabol for financial support of this research
文摘Soil temperature is a major effective factor on the soil and plant biological properties.Irrigation can affect soil temperature and thereby induces a temperature effect on plant growth,which may result in an economic increase due to higher yield and plant nutrition.A ?eld experiment was carried out to investigate the effects of three irrigation strategies including full irrigation(FI),partial root-zone drying(PRD) and de?cit irrigation(DI) on soil temperature and the consequent results on the grain yield and N uptake of maize(Zea May L.).Soil temperature was measured by time domain re?ectometry(TDR) sensors during the 2010 growing season.Irrigation treatments were applied from 55 to 107 d after planting.The PRD treatment caused soil temperature to be in a favorable domain for a longer period(for over 60% of the measuring dates) as a consequent result of water movement to deeper soil layers compared with the other treatments;the PRD treatment also reduced soil temperature at deeper soil depths to below the maximum favorable soil temperature for maize root growth,which resulted in deeper root penetration due to both water availability and favorable soil temperature.Compared to the FI treatment,the PRD treatment increased root water uptake by 50% and caused no signi?cant reduction in total N uptake,while this was not observed in the DI treatment partially due to the negative temperature effect of DI on plant growth,which consequently affected the water and nutrient uptake.A longer vegetation period in the PRD treatment was observed due to higher leaf N concentrations and no signi?cant reduction in maize grain yield occurred in the PRD treatment,compared with those in the FI treatment.Based on the results,having 15.2% water saving during the whole growing season,the PRD irrigation would positively affect soil temperature and the water and nutrient uptake as a consequent,which thereby would prevent signi?cant reduction in maize grain yield.
文摘The general computational approach of Stochastic Gradient Boosting (SGB) is seen as one of the most powerful methods in predictive data mining. Its applications include regression analysis, classification problems with/without continuous categorical predictors. The present theoretical and experimental study aims to model the free hydraulic jump created through rectangular Channels Downstream (DS) symmetric and asymmetric expansions using SGB. A theoretical model for prediction of the depth ratio of jumps is developed using the governing flow equations. At the same time, statistical models using linear regression are also developed. Three different parameters of the hydraulic jump are investigated experimentally using modified angled-guide walls. The results from the modified SGB model indicate a significant improvement on the original models. The present study shows the possibility of applying the modified SGB method in engineering designs and other practical applications.
文摘Experimental results were compared with the computed results obtained from the nine most well-known methods for computation of discharge in a compound channel. The results demonstrate a high accuracy of the divided channel method with the horizontal division lines, while the length of division line is included within the calculation of the wetted perimeter. In addition, as relative depth increases, the results of the all methods converge to each other and also in case of steeper slopes in lower relative depths, more agreements between different calculated methods and experimental results were observed. Furthermore, the results show the effects of the maximum momentum transfer on the horizontal interface between the main channel and flood plains, while further angular distance from the horizontal interface toward the vertical interface between main channel and flood plains causes gradual decrease of momentum transfer effects.