A field experiment was conducted at Hudeiba Research Station Farm, located at Ed-Damer, Sudan during 2011/2012 and 2012/2013 winter seasons to investigate the effect of different irrigation regimes and varieties on ch...A field experiment was conducted at Hudeiba Research Station Farm, located at Ed-Damer, Sudan during 2011/2012 and 2012/2013 winter seasons to investigate the effect of different irrigation regimes and varieties on chickpea (Cicer arietinum L.) yield, yield components and water productivity. The treatments include three irrigation regimes;irrigation every 10 days (I1 = full irrigation), irrigation every 15 days (I2 = moderate stress) and irrigation every 20 days (I3 = severe stress) and two varieties (Borgieg and Wad Hamid). The treatments were arranged in factorial randomized complete block design (RCBD) with 3 replications. Irrigation water being applied, grain yield, yield components (number of pods per plant, number of seeds per pod and the 100 seeds weight) and crop water productivity (CWP) and irrigation water productivity (IWP) were recorded. Results showed that the number of pods per plant, number of seeds per pod, 100-seeds weight, grain yield and irrigation water applied were significantly (p ≤ 0.001) affected by irrigation regimes. The highest values of these traits obtained with full irrigation, whereas the lowest values were recorded under severe water stress conditions. Results also indicated that, moderate and severe water stress regimes saved irrigation water by 24% and 32%, respectively compared with full irrigation. This study indicated that treatment I1 which was irrigated every 10-days did not produce the highest IWP, while treatment I2 which irrigated every 15-days gave the highest IWP. The lowest IWP occurred at severe water stress regime (I3). It could be concluded that moderate water stress might be adopted. Contrarily, the adoption of severe water stressed that produce high water savings would lead to yield losses that might be economically not acceptable. The late maturing chickpea variety of Borgieg significantly (p ≤ 0.05) out-yielded the early maturing variety Wad Hamid by 11%. Borgieg displayed the highest values of CWP and IWP.展开更多
Electrochemical oxidation of water to produce highly reactive hydroxyl radicals(·OH)is the dominant factor that accounts for the organic compounds removal efficiency in water treatment.As an emerging carbon-based...Electrochemical oxidation of water to produce highly reactive hydroxyl radicals(·OH)is the dominant factor that accounts for the organic compounds removal efficiency in water treatment.As an emerging carbon-based material,the investigation of electrocatalytic of water to produce·OH on Graphdiyne(GDY)anode is firstly evaluated by using first-principles calculations.The theoretical calculation results demonstrated that the GDY anode owns a large oxygen evolution reaction(OER)overpotential(η^(OER)=1.95 V)and a weak sorptive ability towards oxygen evolution intermediates(HO^(*),not·OH).The high Gibbs energy change of HO^(*)(3.18 e V)on GDY anode makes the selective production of·OH(△G=2.4 eV)thermodynamically favorable.The investigation comprises the understanding of the relationship between OER to electrochemical advanced oxidation process(EAOP),and give a proof-of-concept of finding the novel and robust environmental EAOP anode at quantum chemistry level.展开更多
In recent years,volatile fatty acid(VFA)production through anaerobic fermentation of sewage sludge,instead of methane production,has been regarded as a high-value and promising roadmap for sludge stabilization and res...In recent years,volatile fatty acid(VFA)production through anaerobic fermentation of sewage sludge,instead of methane production,has been regarded as a high-value and promising roadmap for sludge stabilization and resource recovery.This review first presents the effects of some essential factors that influence VFA production and composition.In the second part,we present an extensive analysis of conventional pretreatment and co-fermentation strategies ultimately addressed to improving VFA production and composition.Also,the effectiveness of these approaches is summarized in terms of sludge degradation,hydrolysis rate,and VFA production and composition.According to published studies,it is concluded that some pretreatments such as alkaline and thermal pretreatment are the most effective ways to enhance VFA production from sewage sludge.The possible reasons for the improvement of VFA production by different methods are also discussed.Finally,this review also highlights several current technical challenges and opportunities in VFA production with spectrum control,and further related research is proposed.展开更多
文摘A field experiment was conducted at Hudeiba Research Station Farm, located at Ed-Damer, Sudan during 2011/2012 and 2012/2013 winter seasons to investigate the effect of different irrigation regimes and varieties on chickpea (Cicer arietinum L.) yield, yield components and water productivity. The treatments include three irrigation regimes;irrigation every 10 days (I1 = full irrigation), irrigation every 15 days (I2 = moderate stress) and irrigation every 20 days (I3 = severe stress) and two varieties (Borgieg and Wad Hamid). The treatments were arranged in factorial randomized complete block design (RCBD) with 3 replications. Irrigation water being applied, grain yield, yield components (number of pods per plant, number of seeds per pod and the 100 seeds weight) and crop water productivity (CWP) and irrigation water productivity (IWP) were recorded. Results showed that the number of pods per plant, number of seeds per pod, 100-seeds weight, grain yield and irrigation water applied were significantly (p ≤ 0.001) affected by irrigation regimes. The highest values of these traits obtained with full irrigation, whereas the lowest values were recorded under severe water stress conditions. Results also indicated that, moderate and severe water stress regimes saved irrigation water by 24% and 32%, respectively compared with full irrigation. This study indicated that treatment I1 which was irrigated every 10-days did not produce the highest IWP, while treatment I2 which irrigated every 15-days gave the highest IWP. The lowest IWP occurred at severe water stress regime (I3). It could be concluded that moderate water stress might be adopted. Contrarily, the adoption of severe water stressed that produce high water savings would lead to yield losses that might be economically not acceptable. The late maturing chickpea variety of Borgieg significantly (p ≤ 0.05) out-yielded the early maturing variety Wad Hamid by 11%. Borgieg displayed the highest values of CWP and IWP.
基金the support from the National Key Research and Development Program of China(No.2017YFE9133400)Preresearch Fund of Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment(No.XTCXSZ2020-3)。
文摘Electrochemical oxidation of water to produce highly reactive hydroxyl radicals(·OH)is the dominant factor that accounts for the organic compounds removal efficiency in water treatment.As an emerging carbon-based material,the investigation of electrocatalytic of water to produce·OH on Graphdiyne(GDY)anode is firstly evaluated by using first-principles calculations.The theoretical calculation results demonstrated that the GDY anode owns a large oxygen evolution reaction(OER)overpotential(η^(OER)=1.95 V)and a weak sorptive ability towards oxygen evolution intermediates(HO^(*),not·OH).The high Gibbs energy change of HO^(*)(3.18 e V)on GDY anode makes the selective production of·OH(△G=2.4 eV)thermodynamically favorable.The investigation comprises the understanding of the relationship between OER to electrochemical advanced oxidation process(EAOP),and give a proof-of-concept of finding the novel and robust environmental EAOP anode at quantum chemistry level.
基金supported by the National Natural Science Foundation of China(No.51578068)"One Thousand Talent Plan" Youth Program
文摘In recent years,volatile fatty acid(VFA)production through anaerobic fermentation of sewage sludge,instead of methane production,has been regarded as a high-value and promising roadmap for sludge stabilization and resource recovery.This review first presents the effects of some essential factors that influence VFA production and composition.In the second part,we present an extensive analysis of conventional pretreatment and co-fermentation strategies ultimately addressed to improving VFA production and composition.Also,the effectiveness of these approaches is summarized in terms of sludge degradation,hydrolysis rate,and VFA production and composition.According to published studies,it is concluded that some pretreatments such as alkaline and thermal pretreatment are the most effective ways to enhance VFA production from sewage sludge.The possible reasons for the improvement of VFA production by different methods are also discussed.Finally,this review also highlights several current technical challenges and opportunities in VFA production with spectrum control,and further related research is proposed.