期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Observations and Modeling of Ice Water Content in a Mixed-Phase Cloud System 被引量:2
1
作者 HOU Tuan-Jie LEI Heng-Chi +1 位作者 HU Zhao-Xia FENG Qiu-Juan 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第4期210-215,共6页
The ice water content(IWC) distribution in a mixed-phase cloud system was investigated using Cloud-Sat data,aircraft measurements,and the Weather Research and Forecasting(WRF) model.Simulated precipitation and IWC wer... The ice water content(IWC) distribution in a mixed-phase cloud system was investigated using Cloud-Sat data,aircraft measurements,and the Weather Research and Forecasting(WRF) model.Simulated precipitation and IWC were in general agreement with rain gauge,sat-ellite,and aircraft observations.The cloud case was char-acterized by a predominant cold layer and high IWC throughout the cloud-development and precipitation stages.The CloudSat-retrieved products suggested that the IWC was distributed from 4.0 to 8.0 km,with the maximum values(up to 0.5 g m-3) at 5.0-6.0 km at the earlymature stage of cloud development.High IWC(up to 0.8 g m-3) was also detected by airborne probes at 4.2 and 3.6 km at the late-mature stage.The WRF model simulation re-vealed that the predominant riming facilitated rapid ac-cumulation of high IWC at 3.0-6.0 km. 展开更多
关键词 飞机观测 混合相 冰水 WRF模式 建模 系统 卫星数据 IWC
下载PDF
Macro-and Micro-physical Characteristics of Different Parts of Mixed Convective-stratiform Clouds and Differences in Their Responses to Seeding 被引量:1
2
作者 Dejun LI Chuanfeng ZHAO +5 位作者 Peiren LI Cao Liu Dianli GONG Siyao LIU Zhengteng YUAN Yingying CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2040-2055,共16页
This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in ... This study investigates the cloud macro-and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018,based on the observations from the aircraft,the Suomi National Polar-Orbiting Partnership(NPP)satellite,and the high-resolution Himawari-8(H8)satellite.The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region.This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat,resulting in strengthened updrafts,enhanced radar echoes,higher cloud tops,and more and larger precipitation particles.In contrast,in the stratiform cloud region,after the Silver Iodide(AgI)seeding,the radar echoes become significantly weaker at heights close to the seeding layer,with the echo tops lowered by 1.4–1.7 km.In addition,a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km,and features such as icing seeding tracks appear.These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part.The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding;while in the stratiform region,a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding,which moves along the wind direction as width increases. 展开更多
关键词 airborne Ka-band Precipitation Radar(KPR) mixed convective-stratiform clouds convective region stratiform region cloud seeding cloud microphysical properties
下载PDF
Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China 被引量:6
3
作者 Junxia Li Xingang Liu +9 位作者 Liang Yuan Yan Yin Zhanqing Li Peiren Li Gang Ren Lijun Jin Runjun Li Zipeng Dong Yiyu Li Junmei Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第8期44-56,共13页
Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four ... Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients(σsc), absorption coefficients(σab),Angstr?m exponent(α), single scattering albedo(ω), backscattering ratio(βsc), aerosol mass scattering proficiency(Q sc) and aerosol surface scattering proficiency(Q sc′) were obtained. The mean statistical values of σsc were 77.45 Mm-1(at 450 nm), 50.72 Mm-1(at 550 nm), and32.02 Mm-1(at 700 nm). The mean value of σab was 7.62 Mm-1(at 550 nm). The mean values ofα, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters(ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Q sc and Q sc′ showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Q sc, Q sc′, σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. 展开更多
关键词 Vertical distribution Optical properties Aircraft measurements The Loess Plateau
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部