In this investigation,mechanical grinding was applied to fabricating the Mg-based alloys La_(7)Sm_(3)Mg_(80)Ni_(10)+5 wt.%M(M=None,TiO_(2),La_(2)O_(3))(named La_(7)Sm_(3)Mg_(80)Ni_(10)-5 M(M=None,TiO_(2),La_(2)O_(3)))...In this investigation,mechanical grinding was applied to fabricating the Mg-based alloys La_(7)Sm_(3)Mg_(80)Ni_(10)+5 wt.%M(M=None,TiO_(2),La_(2)O_(3))(named La_(7)Sm_(3)Mg_(80)Ni_(10)-5 M(M=None,TiO_(2),La_(2)O_(3))).The result reveals that the structures of as-milled alloys consist of amorphous and nanocrystalline.The particle sizes of the added M(M=TiO_(2),La_(2)O_(3))alloys obviously diminish in comparison with the M=None specimen,suggesting that the catalysts TiO_(2)and La_(2)O_(3)can enhance the grinding efficiency.What’s more,the additives TiO_(2)and La_(2)O_(3)observably improve the activation performance and reaction kinetics of the composite.The time required by releasing 3 wt.%hydrogen at553,573 and 593 K is 988,553 and 419 s for the M=None sample,and 578,352 and 286 s for the M=TiO_(2)composite,and 594,366,301 s for the La_(2)O_(3)containing alloy,respectively.The absolute value of hydrogenation enthalpy change|△H|of the M(M=None,TiO_(2),La_(2)O_(3))alloys is 77.13,74.28 and 75.28 kJ/mol.Furthermore,the addition of catalysts reduces the hydrogen desorption activation energy(E_(a)^(de)).展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51901105,51871125,and 51761032)Natural Science Foundation of Inner Mongolia,China(2019BS05005)+1 种基金Inner Mongolia University of Science and Technology Innovation Fund(2019QDL-B11)Major Science and Technology Innovation Projects in Shandong Province(2019JZZY010320)
文摘In this investigation,mechanical grinding was applied to fabricating the Mg-based alloys La_(7)Sm_(3)Mg_(80)Ni_(10)+5 wt.%M(M=None,TiO_(2),La_(2)O_(3))(named La_(7)Sm_(3)Mg_(80)Ni_(10)-5 M(M=None,TiO_(2),La_(2)O_(3))).The result reveals that the structures of as-milled alloys consist of amorphous and nanocrystalline.The particle sizes of the added M(M=TiO_(2),La_(2)O_(3))alloys obviously diminish in comparison with the M=None specimen,suggesting that the catalysts TiO_(2)and La_(2)O_(3)can enhance the grinding efficiency.What’s more,the additives TiO_(2)and La_(2)O_(3)observably improve the activation performance and reaction kinetics of the composite.The time required by releasing 3 wt.%hydrogen at553,573 and 593 K is 988,553 and 419 s for the M=None sample,and 578,352 and 286 s for the M=TiO_(2)composite,and 594,366,301 s for the La_(2)O_(3)containing alloy,respectively.The absolute value of hydrogenation enthalpy change|△H|of the M(M=None,TiO_(2),La_(2)O_(3))alloys is 77.13,74.28 and 75.28 kJ/mol.Furthermore,the addition of catalysts reduces the hydrogen desorption activation energy(E_(a)^(de)).