A new type of bridge called "butterfly web bridge" is under construction in Japan. In a butterfly web bridge, the butterfly-shaped web forms a structure that exhibits behavior similar to a double Warren truss. The 8...A new type of bridge called "butterfly web bridge" is under construction in Japan. In a butterfly web bridge, the butterfly-shaped web forms a structure that exhibits behavior similar to a double Warren truss. The 80 MPa concrete is used for the butterfly web which has a precast plate with a thickness of 150 mm. As butterfly web is a concrete material, reinforcement provided by prestressing tendons is needed on the tension side. Moreover, the 150 mm plate has no re-bars but is reinforced by steel fibers. This bridge, named Takubogawa Bridge, is a highway bridge and has 10 spans including the 87.5 m maximum span length. Takubogawa Bridge is constructed by flee cantilevering method. The butterfly web enables the construction speed of cantilevering to be advanced about 50% compared with conventional cast-in-situ method and can meet the requirement of light weight and low maintenance.展开更多
In this paper,simulations of real rockfall by discontinuous deformation analysis (DDA) are conducted.In the simulations,the energy losses of rockfall are categorized into three types,i.e.the loss by friction,the loss ...In this paper,simulations of real rockfall by discontinuous deformation analysis (DDA) are conducted.In the simulations,the energy losses of rockfall are categorized into three types,i.e.the loss by friction,the loss by collision,and the loss by vegetation.Modeling of the energy loss using absolute parameters is conducted by the DDA method.Moreover,in order to verify the applicability and validity of the proposed DDA,field tests on rockfall and corresponding simulations of rockfall tests by DDA are performed.The simulated results of rockfall velocity and rockfall jumping height agree well with those obtained from the field tests.Therefore,the new technique properly considers the energy-absorption ability of slope based on vegetation condition and shape of the rockfall,and provides a new method for the assessment and preventive design of rockfall.展开更多
Several complaints arose from houses near an object bridge about rattling sounds caused by infrasound, a low-frequency noise in the 0 - 20 Hz frequency range. In Japan, conventional trucks with a rear leaf suspension ...Several complaints arose from houses near an object bridge about rattling sounds caused by infrasound, a low-frequency noise in the 0 - 20 Hz frequency range. In Japan, conventional trucks with a rear leaf suspension have vibration frequencies of about 3.0 Hz;furthermore, their tire spring vibration frequency is 10 - 20 Hz. Infrasound is radiated from the bridge owing to the truck’s suspension spring vibration and/or tire spring vibration. In this study, the bridge vibrations were investigated using test trucks or conventional trucks to determine the cause of rattling sounds. It was found that the truck’s spring vibration caused excessive bending vibration in the object bridge;this in turn was transmitted to nearby houses as infrasound. Various preventive measures for infrasound were then considered, and their effectiveness was investigated through a simulation of the dynamic response using a running truck. The difference between each measure’s effectiveness as obtained by a comparison with each simulation’s result provided a clear picture about the infrasound reduction methods in consideration of both construction cost and working difficulty.展开更多
文摘A new type of bridge called "butterfly web bridge" is under construction in Japan. In a butterfly web bridge, the butterfly-shaped web forms a structure that exhibits behavior similar to a double Warren truss. The 80 MPa concrete is used for the butterfly web which has a precast plate with a thickness of 150 mm. As butterfly web is a concrete material, reinforcement provided by prestressing tendons is needed on the tension side. Moreover, the 150 mm plate has no re-bars but is reinforced by steel fibers. This bridge, named Takubogawa Bridge, is a highway bridge and has 10 spans including the 87.5 m maximum span length. Takubogawa Bridge is constructed by flee cantilevering method. The butterfly web enables the construction speed of cantilevering to be advanced about 50% compared with conventional cast-in-situ method and can meet the requirement of light weight and low maintenance.
文摘In this paper,simulations of real rockfall by discontinuous deformation analysis (DDA) are conducted.In the simulations,the energy losses of rockfall are categorized into three types,i.e.the loss by friction,the loss by collision,and the loss by vegetation.Modeling of the energy loss using absolute parameters is conducted by the DDA method.Moreover,in order to verify the applicability and validity of the proposed DDA,field tests on rockfall and corresponding simulations of rockfall tests by DDA are performed.The simulated results of rockfall velocity and rockfall jumping height agree well with those obtained from the field tests.Therefore,the new technique properly considers the energy-absorption ability of slope based on vegetation condition and shape of the rockfall,and provides a new method for the assessment and preventive design of rockfall.
文摘Several complaints arose from houses near an object bridge about rattling sounds caused by infrasound, a low-frequency noise in the 0 - 20 Hz frequency range. In Japan, conventional trucks with a rear leaf suspension have vibration frequencies of about 3.0 Hz;furthermore, their tire spring vibration frequency is 10 - 20 Hz. Infrasound is radiated from the bridge owing to the truck’s suspension spring vibration and/or tire spring vibration. In this study, the bridge vibrations were investigated using test trucks or conventional trucks to determine the cause of rattling sounds. It was found that the truck’s spring vibration caused excessive bending vibration in the object bridge;this in turn was transmitted to nearby houses as infrasound. Various preventive measures for infrasound were then considered, and their effectiveness was investigated through a simulation of the dynamic response using a running truck. The difference between each measure’s effectiveness as obtained by a comparison with each simulation’s result provided a clear picture about the infrasound reduction methods in consideration of both construction cost and working difficulty.