We propose an ex vivo T cell expansion system that mimics natural antigen-presenting cells(APCs)for adoptive cell therapy(ACT).Microfiber scaffolds coated with dendritic cell(DC)membrane replicate physicochemical prop...We propose an ex vivo T cell expansion system that mimics natural antigen-presenting cells(APCs)for adoptive cell therapy(ACT).Microfiber scaffolds coated with dendritic cell(DC)membrane replicate physicochemical properties of dendritic cells specific for T cell activation such as rapid recognition by T cells,long duration of T cell tethering,and DC-specific co-stimulatory cues.The DC membrane-coated scaffold is first surface-immobilized with T cell stimulatory ligands,anti-CD3(αCD3)and anti-CD28(αCD28)antibodies,followed by adsorption of releasable interleukin-2(IL-2).The scaffolds present both surface and soluble cues to T cells ex vivo in the same way that these cues are presented by natural APCs in vivo.We demonstrate that the DC-mimicking scaffold promotes greater polyclonal expansion of primary human T cells as compared toαCD3/αCD28-func-tionalized Dynabead.More importantly,major histocompatibility complex molecules derived from the DC membrane of the scaffold allow antigen-specific T cell expansion with target cell-specific killing ability.In addition,most of the expanded T cells(~97%)can be harvested from the scaffold by density gradient centri-fugation.Overall,the DC-mimicking scaffold offers a scalable,modular,and customizable platform for rapid expansion of highly functional T cells for ACT.展开更多
基金School of Engineering and Applied Science of Columbia University and the National Research Foundation of Korea(2020R1F1A1072699,2018K1A4A3A01064257,and 2021R1A5A2022318)Dankook University(Priority Institute Support Program in 2021,Global Research Program).
文摘We propose an ex vivo T cell expansion system that mimics natural antigen-presenting cells(APCs)for adoptive cell therapy(ACT).Microfiber scaffolds coated with dendritic cell(DC)membrane replicate physicochemical properties of dendritic cells specific for T cell activation such as rapid recognition by T cells,long duration of T cell tethering,and DC-specific co-stimulatory cues.The DC membrane-coated scaffold is first surface-immobilized with T cell stimulatory ligands,anti-CD3(αCD3)and anti-CD28(αCD28)antibodies,followed by adsorption of releasable interleukin-2(IL-2).The scaffolds present both surface and soluble cues to T cells ex vivo in the same way that these cues are presented by natural APCs in vivo.We demonstrate that the DC-mimicking scaffold promotes greater polyclonal expansion of primary human T cells as compared toαCD3/αCD28-func-tionalized Dynabead.More importantly,major histocompatibility complex molecules derived from the DC membrane of the scaffold allow antigen-specific T cell expansion with target cell-specific killing ability.In addition,most of the expanded T cells(~97%)can be harvested from the scaffold by density gradient centri-fugation.Overall,the DC-mimicking scaffold offers a scalable,modular,and customizable platform for rapid expansion of highly functional T cells for ACT.