Ligand-induced receptor dimerization or oligomerization is a widespread mechanism for ensuring communication specificity,safeguarding receptor activation,and facilitating amplification of signal transduction across th...Ligand-induced receptor dimerization or oligomerization is a widespread mechanism for ensuring communication specificity,safeguarding receptor activation,and facilitating amplification of signal transduction across the cellular membrane.However,cell-surface antigeninduced multimerization(dubbed AIM herein)has not yet been consciously leveraged in chimeric antigen receptor(CAR)engineering for enriching T cell-based therapies.We co-developed ciltacabtagene autoleucel(cilta-cel),whose CAR incorporates two B-cell maturation antigen(BCMA)-targeted nanobodies in tandem,for treating multiple myeloma.Here we elucidated a structural and functional model in which BCMA-induced cilta-cel CAR multimerization amplifies myeloma-targeted T cell-mediated cytotoxicity.Crystallographic analysis of BCMA–nanobody complexes revealed atomic details of antigen–antibody hetero-multimerization whilst analytical ultracentrifugation and small-angle X-ray scattering characterized interdependent BCMA apposition and CAR juxtaposition in solution.BCMA-induced nanobody CAR multimerization enhanced cytotoxicity,alongside elevated immune synapse formation and cytotoxicity-mediating cytokine release,towards myeloma-derived cells.Our results provide a framework for contemplating the AIM approach in designing next-generation CARs.展开更多
基金supported by grants from the Double First-Class Project from the Ministry of Education(grant code:WF510162602)Innovative Research Team of High-Level Local Universities in Shanghai,Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research(grant code:2019CXJQ01)+4 种基金Overseas Expertise Introduction Project for Discipline Innovation(111 Projectgrant code:B17029)National Natural Science Foundation of China(grant numbers:82230006 and 81900206)Shanghai Shenkang Hospital Development Center(grant code:SHDC2020CR5002)Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine-ShanghaiTech University,Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University(grant code:21TQ1400226).
文摘Ligand-induced receptor dimerization or oligomerization is a widespread mechanism for ensuring communication specificity,safeguarding receptor activation,and facilitating amplification of signal transduction across the cellular membrane.However,cell-surface antigeninduced multimerization(dubbed AIM herein)has not yet been consciously leveraged in chimeric antigen receptor(CAR)engineering for enriching T cell-based therapies.We co-developed ciltacabtagene autoleucel(cilta-cel),whose CAR incorporates two B-cell maturation antigen(BCMA)-targeted nanobodies in tandem,for treating multiple myeloma.Here we elucidated a structural and functional model in which BCMA-induced cilta-cel CAR multimerization amplifies myeloma-targeted T cell-mediated cytotoxicity.Crystallographic analysis of BCMA–nanobody complexes revealed atomic details of antigen–antibody hetero-multimerization whilst analytical ultracentrifugation and small-angle X-ray scattering characterized interdependent BCMA apposition and CAR juxtaposition in solution.BCMA-induced nanobody CAR multimerization enhanced cytotoxicity,alongside elevated immune synapse formation and cytotoxicity-mediating cytokine release,towards myeloma-derived cells.Our results provide a framework for contemplating the AIM approach in designing next-generation CARs.