Fluorescent-patterned materials are widely used in information storage and encryp-tion.However,preparing a patternedfluorescent display on a matrix currently requires a time-consuming(hours or even days)and complex mul...Fluorescent-patterned materials are widely used in information storage and encryp-tion.However,preparing a patternedfluorescent display on a matrix currently requires a time-consuming(hours or even days)and complex multi-step process.Herein,a rapid and mild technique developed for the in-situ controllable synthe-sis offluorescent nitrogen-doped carbon dots(NCDs)on eco-friendly transparent woodfilms(TEMPO-oxidized carboxyl woodfilm[TOWF])within a few min-utes was developed.A wood skeleton was employed as the carbon precursor for NCD synthesis as well as the matrix for the uniform and controlled distribution of NCDs.Moreover,the in-situ synthesis mechanism for preparing NCDs in TOWF was proposed.The resultingfluorescent woodfilms have excellent tensile strength(310.0015.57 MPa),high transmittance(76.2%),high haze(95.0%),UV-blocking±properties in the full ultraviolet(UV)range,andfluorescent performance that can be modified by changing the heating parameters.Fluorescent patterning was sim-ply achieved by regulating the in-situ NCD synthesis regions,and thefluorescent patterns were formed within 10 s.Thesefluorescent-patterned woodfilms can effec-tively store and encrypt information,and they can interact with external information through a transparent matrix.This work provides a green and efficient strategy for fabricatingfluorescent information storage and encryption materials.展开更多
文摘Fluorescent-patterned materials are widely used in information storage and encryp-tion.However,preparing a patternedfluorescent display on a matrix currently requires a time-consuming(hours or even days)and complex multi-step process.Herein,a rapid and mild technique developed for the in-situ controllable synthe-sis offluorescent nitrogen-doped carbon dots(NCDs)on eco-friendly transparent woodfilms(TEMPO-oxidized carboxyl woodfilm[TOWF])within a few min-utes was developed.A wood skeleton was employed as the carbon precursor for NCD synthesis as well as the matrix for the uniform and controlled distribution of NCDs.Moreover,the in-situ synthesis mechanism for preparing NCDs in TOWF was proposed.The resultingfluorescent woodfilms have excellent tensile strength(310.0015.57 MPa),high transmittance(76.2%),high haze(95.0%),UV-blocking±properties in the full ultraviolet(UV)range,andfluorescent performance that can be modified by changing the heating parameters.Fluorescent patterning was sim-ply achieved by regulating the in-situ NCD synthesis regions,and thefluorescent patterns were formed within 10 s.Thesefluorescent-patterned woodfilms can effec-tively store and encrypt information,and they can interact with external information through a transparent matrix.This work provides a green and efficient strategy for fabricatingfluorescent information storage and encryption materials.